Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Tidyverse, dplyr R Cheat Sheet, Cheat Sheet of Advanced Computer Programming

R For Data Science Cheat Sheet, Tidyverse for Beginners

Typology: Cheat Sheet

2020/2021
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 04/26/2021

oliver97
oliver97 🇺🇸

4.4

(43)

324 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
R For Data Science Cheat Sheet
Tidyverse for Beginners
Tidyverse
The tidyverse is a powerful collection of R packages that are actually
data tools for transforming and visualizing data. All packages of the
tidyverse share an underlying philosophy and common APIs.
The core packages are:
ggplot2, which implements the grammar of graphics. You can use it
to visualize your data.
dplyr is a grammar of data manipulation. You can use it to solve the
most common data manipulation challenges.
tidyr helps you to create tidy data or data where each variable is in a
column, each observation is a row end each value is a cell.
readr is a fast and friendly way to read rectangular data.
purrr enhances R’s functional programming (FP) toolkit by providing a
complete and consistent set of tools for working with functions and
vectors.
tibble is a modern re-imaginging of the data frame.
stringr provides a cohesive set of functions designed to make
working with strings as easy as posssible
forcats provide a suite of useful tools that solve common problems
with factors.
You can install the complete tidyverse with:
Then, load the core tidyverse and make it available in your current R
session by running:
Note: there are many other tidyverse packages with more specialised usage. They are not
loaded automatically with library(tidyverse), so you’ll need to load each one with its own call
to library().
ggplot2
> install.packages("tidyverse")
> iris %>% Select iris data of species
filter(Species=="virginica") "virginica"
> iris %>% Select iris data of species
filter(Species=="virginica", "virginica" and sepal length
Sepal.Length > 6) greater than 6.
dplyr
Filter
> library(tidyverse)
Useful Functions
Arrange
Mutate
Summarize
> tidyverse_conflicts() Conflicts between tidyverse and other
packages
> tidyverse_deps() List all tidyverse dependencies
> tidyverse_logo() Get tidyverse logo, using ASCII or unicode
characters
> tidyverse_packages() List all tidyverse packages
> tidyverse_update() Update tidyverse packages
Loading in the data
> library(datasets) Load the datasets package
> library(gapminder) Load the gapminder package
> attach(iris) Attach iris data to the R search path
filter() allows you to select a subset of rows in a data frame.
> iris %>% Sort in ascending order of
arrange(Sepal.Length) sepal length
> iris %>% Sort in descending order of
arrange(desc(Sepal.Length)) sepal length
arrange() sorts the observations in a dataset in ascending or descending order
based on one of its variables.
> iris %>% Filter for species "virginica"
filter(Species=="virginica") %>% then arrange in descending
arrange(desc(Sepal.Length)) order of sepal length
Combine multiple dplyr verbs in a row with the pipe operator %>%:
mutate() allows you to update or create new columns of a data frame.
> iris %>% Change Sepal.Length to be
mutate(Sepal.Length=Sepal.Length*10) in millimeters
> iris %>% Create a new column
mutate(SLMm=Sepal.Length*10) called SLMm
Combine the verbs filter(), arrange(), and mutate():
> iris %>%
filter(Species=="Virginica") %>%
mutate(SLMm=Sepal.Length*10) %>%
arrange(desc(SLMm))
> iris %>% Summarize to find the
summarize(medianSL=median(Sepal.Length)) median sepal length
> iris %>% Filter for virginica then
filter(Species=="virginica") %>% summarize the median
summarize(medianSL=median(Sepal.Length)) sepal length
summarize() allows you to turn many observations into a single data point.
> iris %>%
filter(Species=="virginica") %>%
summarize(medianSL=median(Sepal.Length),
maxSL=max(Sepal.Length))
You can also summarize multiple variables at once:
group_by() allows you to summarize within groups instead of summarizing the
entire dataset:
> iris %>% Find median and max
group_by(Species) %>% sepal length of each
summarize(medianSL=median(Sepal.Length), species
maxSL=max(Sepal.Length))
> iris %>% Find median and max
filter(Sepal.Length>6) %>% petal length of each
group_by(Species) %>% species with sepal
summarize(medianPL=median(Petal.Length), length > 6
maxPL=max(Petal.Length))
Scatter plot
> iris_small <- iris %>%
filter(Sepal.Length > 5)
> ggplot(iris_small, aes(x=Petal.Length, Compare petal
y=Petal.Width)) + width and length
geom_point()
Scatter plots allow you to compare two variables within your data. To do this with
ggplot2, you use geom_point()
Additional Aesthetics
> ggplot(iris_small, aes(x=Petal.Length,
y=Petal.Width,
color=Species)) +
geom_point()
• Color
• Size
> ggplot(iris_small, aes(x=Petal.Length,
y=Petal.Width,
color=Species,
size=Sepal.Length)) +
geom_point()
Faceting
> ggplot(iris_small, aes(x=Petal.Length,
y=Petal.Width)) +
geom_point()+
facet_wrap(~Species)
Line Plots
Bar Plots
Histograms
Box Plots
> by_year <- gapminder %>%
group_by(year) %>%
summ arize(medianGdpPerCap=median(gdpPercap))
> ggplot(by_year, aes(x=year,
y=medianGdpPerCap))+
geom_line()+
expand_limits(y=0)
> by_species <- iris %>%
filter(Sepal.Length>6) %>%
group_by(Species) %>%
summarize(medianPL=median(Petal.Length))
> ggplot(by_species, aes(x=Species,
y=medianPL)) +
geom_col()
> ggplot(iris_small, aes(x=Petal.Length))+
geom_histogram()
> ggplot(iris_small, aes(x=Species,
y=Sepal.Width))+
geom_boxplot()
Discount

On special offer

Partial preview of the text

Download Tidyverse, dplyr R Cheat Sheet and more Cheat Sheet Advanced Computer Programming in PDF only on Docsity!

R For Data Science Cheat Sheet

Tidyverse for Beginners

Tidyverse

The tidyverse is a powerful collection of R packages that are actually

data tools for transforming and visualizing data. All packages of the

tidyverse share an underlying philosophy and common APIs.

The core packages are:

  • ggplot2 , which implements the grammar of graphics. You can use it

to visualize your data.

  • dplyr is a grammar of data manipulation. You can use it to solve the

most common data manipulation challenges.

  • tidyr helps you to create tidy data or data where each variable is in a

column, each observation is a row end each value is a cell.

  • readr is a fast and friendly way to read rectangular data.
  • purrr enhances R’s functional programming (FP) toolkit by providing a

complete and consistent set of tools for working with functions and

vectors.

  • tibble is a modern re-imaginging of the data frame.
  • stringr provides a cohesive set of functions designed to make

working with strings as easy as posssible

  • forcats provide a suite of useful tools that solve common problems

with factors.

You can install the complete tidyverse with:

Then, load the core tidyverse and make it available in your current R

session by running:

Note: there are many other tidyverse packages with more specialised usage. They are not loaded automatically with library(tidyverse), so you’ll need to load each one with its own call to library().

ggplot

install.packages("tidyverse")

> iris %>% Select iris data of species

filter(Species=="virginica") "virginica"

> iris %>% Select iris data of species

filter(Species=="virginica", "virginica" and sepal length

Sepal.Length > 6) greater than 6.

dplyr

Filter

library(tidyverse)

Useful Functions

Arrange

Mutate

Summarize

> tidyverse_conflicts() Conflicts between tidyverse and other

packages

> tidyverse_deps() List all tidyverse dependencies

> tidyverse_logo() Get tidyverse logo, using ASCII or unicode

characters

> tidyverse_packages() List all tidyverse packages

> tidyverse_update() Update tidyverse packages

Loading in the data

> library(datasets) Load the datasets package

> library(gapminder) Load the gapminder package

> attach(iris) Attach iris data to the R search path

filter() allows you to select a subset of rows in a data frame.

> iris %>% Sort in ascending order of

arrange(Sepal.Length) sepal length

> iris %>% Sort in descending order of

arrange(desc(Sepal.Length)) sepal length

arrange() sorts the observations in a dataset in ascending or descending order

based on one of its variables.

> iris %>% Filter for species "virginica"

filter(Species=="virginica") %>% then arrange in descending

arrange(desc(Sepal.Length)) order of sepal length

Combine multiple dplyr verbs in a row with the pipe operator %>%:

mutate() allows you to update or create new columns of a data frame.

> iris %>% Change Sepal.Length to be

mutate(Sepal.Length=Sepal.Length*10) in millimeters

> iris %>% Create a new column

mutate(SLMm=Sepal.Length*10) called SLMm

Combine the verbs filter(), arrange(), and mutate():

iris %>% filter(Species=="Virginica") %>% mutate(SLMm=Sepal.Length*10) %>% arrange(desc(SLMm))

> iris %>% Summarize to find the

summarize(medianSL=median(Sepal.Length)) median sepal length

> iris %>% Filter for virginica then

filter(Species=="virginica") %>% summarize the median

summarize(medianSL=median(Sepal.Length)) sepal length

summarize() allows you to turn many observations into a single data point.

iris %>% filter(Species=="virginica") %>% summarize(medianSL=median(Sepal.Length), maxSL=max(Sepal.Length))

You can also summarize multiple variables at once:

group_by() allows you to summarize within groups instead of summarizing the

entire dataset:

> iris %>% Find median and max

group_by(Species) %>% sepal length of each

summarize(medianSL=median(Sepal.Length), species

maxSL=max(Sepal.Length))

> iris %>% Find median and max

filter(Sepal.Length>6) %>% petal length of each

group_by(Species) %>% species with sepal

summarize(medianPL=median(Petal.Length), length > 6

maxPL=max(Petal.Length))

Scatter plot

iris_small <- iris %>% filter(Sepal.Length > 5)

> ggplot(iris_small, aes(x=Petal.Length, Compare petal

y=Petal.Width)) + width and length

geom_point()

Scatter plots allow you to compare two variables within your data. To do this with

ggplot2, you use geom_point()

Additional Aesthetics

ggplot(iris_small, aes(x=Petal.Length, y=Petal.Width, color=Species)) + geom_point()

  • Color
  • Size

    ggplot(iris_small, aes(x=Petal.Length, y=Petal.Width, color=Species, size=Sepal.Length)) + geom_point()

Faceting

ggplot(iris_small, aes(x=Petal.Length, y=Petal.Width)) + geom_point()+ facet_wrap(~Species)

Line Plots

Bar Plots

Histograms

Box Plots

by_year <- gapminder %>% group_by(year) %>% summarize(medianGdpPerCap=median(gdpPercap)) ggplot(by_year, aes(x=year, y=medianGdpPerCap))+ geom_line()+ expand_limits(y=0) by_species <- iris %>% filter(Sepal.Length>6) %>% group_by(Species) %>% summarize(medianPL=median(Petal.Length)) ggplot(by_species, aes(x=Species, y=medianPL)) + geom_col() ggplot(iris_small, aes(x=Petal.Length))+

geom_histogram()

ggplot(iris_small, aes(x=Species, y=Sepal.Width))+ geom_boxplot()