






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Definition , bright and dark images, image contrast, Why use it?
Typology: Slides
1 / 11
This page cannot be seen from the preview
Don't miss anything!
Only the transmitted beam is allowed to pass through the objective aperture. Image is bright where diffraction in specimen is weak. DARK FIELD (DF) IMAGE: Only one diffracted beam passes through objective aperture. Image is dark where diffraction is weak, bright where diffraction is strong. LATTICE IMAGE (High Resolution TEM: HRTEM image): Interference of transmitted beam (TB) and diffracted beams (DBs) produces an image of the crystal lattice. DIFFRACTION PATTERN: Intermediate lens adjusted to image the diffraction pattern formed in back focal plane (BFP) of objective lens. TEM Imagining
BF & DF Imaging Isolated individual Gold Atoms around Gold Nanoparticles: (left) dark field image, (right) bright field image.
Mass-thickness contrast : scattering out of transmitted beam creates contrast due to difference of atomic number ( Z ) and/or thickness t ; scattering is proportional to Z^2 t. Higher-Z or thicker areas are darker in BF. Applicable to crystalline or amorphous materials. Diffraction contrast : scattering out of transmitted beam creates contrast due to differences in diffracted intensity produces contrast for dislocations, grain boundaries, stacking faults, second phase particles etc. Strongly diffracting objects are darker in BF. Applicable only to crystalline materials. Phase contrast: interference between transmitted and diffracted beam produces lattice fringes or atomic structure images (typically referred to as HRTEM (high-resolution TEM).
Single crystal, polycrystalline or amorphous? Determine exact orientation of crystal(s). Identify crystal structure (diffraction). Evaluate crystal quality (lattice imaging). CRYSTAL DEFECTS Presence or absence of dislocations, stacking faults, grain boundaries, twins Dislocation Burgers vectors; nature of stacking faults SECOND-PHASE PARTICLES Size, shape, and distribution; crystallographic orientation relative to surrounding “matrix”, chemical analysis via analytical attachments (EDXS, EELS) NANOPARTICLES, NANOWIRES, NANORODS etc. Size distribution, crystal structure and orientation, crystal perfection