
Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Typology: Cheat Sheet
1 / 1
This page cannot be seen from the preview
Don't miss anything!
Taylor Series 1/1-x 1+x+x +x +... ∑ x sin(x) x -x /3!+x /5!- +...
∑ (-1) x /‐ (2n+1)! e 1+x+x /2!+‐ x /3!+...
∑ x /n!
cos(x) 1-x /2!+x /4!- +...
∑ (-1) x /(2n)!
centered around 0 (1/1-x only valid for -1<x<1.)
Trig Sub's √(x +a ) x=atan(θ) √(a -x ) x-asin(θ) √(x -a ) x=asec(θ) b-ax x= √b / √a sin(θ) ax +b x= √b / √a tan(θ) ax -b x= √b / √a sec(θ)
Convergence|Divergence test N term test for divergence
lim(n>∞) an
≠0 ∑an diverges
P-Test converge p>
diverge p≤
Limit Comparison
lim(n>∞) (an/bn)
L≠0 series both diverge|c‐ onverge Ratio test r= lim(n>∞) |an+1/an|
r<1 converge r>1 diverge
Alternating series test
lim(n>∞) an
=0 ∑ (-1) an converges
Common Integrals ∫sin(x)dx -cos(x)+C ∫cos(x)dx sin(x)+C ∫tan(x)dx -ln(cos(x))+C ∫sec(x)dx ln(sec(x)+tan(x))+C ∫csc(x)dx -ln(csc(x)+cot(x))+C ∫cot(x)dx ln(sin(x))+C ∫sec (x)dx tan(x)+C ∫e dx e /f (x)+C ∫(1/x)dx ln(x)+C ∫(1/x )dx (x /n+1)+C ∫dx/√(a-x ) arcsin(x/√(a))+C ∫dx/x +a (1/√a)arctan(x/√a)+C
Important Derivatives d/dx arctan f(x) f (x)/x + d/dx sec(θ) sec(θ)tan(θ)
Power Series general form ∑ an(x-a) an = sequence of coeff. center x=a radius of conver‐ gence
R=lim(n>∞) |an/an+1|
endpoints x=a+R and x=a-R in series
Parametric Curves Horizontal Tangents (x)
when dy/dx=0 t=?
Equations for Parabola y=a(x-h) +k Directrix y=k-(1/4a) Focus (h,k+1/4a) x=a(y-k) +h Directrix x=h-(1/4a) Focus (h+1/4a,k)
Equations for Ellipses (x-h) /a + (y-k) /b =
c=√(|a -b |)
eccentricity c/(max a|b) foci (on major axis)
when x= center and y= center y= horizontal axis x= vertical axis
Trig Identities sec (θ) tan (θ)+ sin (θ) 1-cos (θ) tan (θ) sec (θ)- cos (θ) [1+cos(2θ)]/ sin (θ) [1-cos(2θ)]/ double angle cos (θ) (1+cos(2θ)/ double angle sin (θ) (1-cos(2θ)/
Polar Coordinates & Area Area ∫1/2 (f(x)) dx One petal of r=sin(nθ) interval [0,π/n] One petal of r=cos(nθ)
[-π/2n,π/2n]
Polar > Cartesian x=rcos(θ) y=rsin(θ) Cartesian > Polar tan(θ)=y/x x +y ‐ =r
2 3 n 1 3 5 n 2n+ 1
x 2 3
n
2 4 n 2n
2 2 2 2 2 2 2 2 2
th
n
2 f(x) f(x) '
n n+ 2 2
' 2
n
2
2
2 2 ‐ 2 2
2 2
2 2 2 2 2 2 2 2 2 2
2
2 2 2