Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Ultimate Calculus II Cheat Sheet, Cheat Sheet of Calculus

Typology: Cheat Sheet

2020/2021

Uploaded on 04/27/2021

kavinsky
kavinsky 🇺🇸

4.4

(28)

286 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Calculus 2 Cheat Sheet
Taylor Series
1/1-x 1+x+x +x +... ∑ x
sin(x) x -x /3!+x /5!-
+...
∑ (-1) x /
(2n+1)!
e 1+x+x /2!+
x /3!+...
∑ x /n!
cos(x) 1-x /2!+x /4!-
+...
∑ (-1) x /(2n)!
centered around 0
(1/1-x only valid for -1<x<1.)
Trig Sub's
√(x +a ) x=atan(θ)
√(a -x ) x-asin(θ)
√(x -a ) x=asec(θ)
b-ax x= √b / √a sin(θ)
ax +b x= √b / √a tan(θ)
ax -b x= √b / √a sec(θ)
Convergence|Divergence test
N term test
for
divergence
lim(n>∞)
an
≠0 ∑an
diverges
P-Test converge
p>1
diverge p≤1
Limit
Comparison
L=
lim(n>∞)
(an/bn)
L≠0 series both
diverge|c
onverge
Ratio test r=
lim(n>∞)
|an+1/an|
r<1 converge
r>1 diverge
Alternating
series test
lim(n>∞)
an
=0 ∑ (-1) an
converges
Common Integrals
sin(x)dx -cos(x)+C
cos(x)dx sin(x)+C
tan(x)dx -ln(cos(x))+C
sec(x)dx ln(sec(x)+tan(x))+C
csc(x)dx -ln(csc(x)+cot(x))+C
cot(x)dx ln(sin(x))+C
sec (x)dx tan(x)+C
e dx e /f (x)+C
(1/x)dx ln(x)+C
(1/x )dx (x /n+1)+C
dx/√(a-x ) arcsin(x/√(a))+C
dx/x +a (1/√a)arctan(x/√a)+C
Important Derivatives
d/dx arctan f(x) f (x)/x+1
d/dx sec(θ) sec(θ)tan(θ)
Power Series
general form ∑ an(x-a)
an = sequence of coeff.
center x=a
radius of conver
gence
R=lim(n>∞) |an/an+1|
endpoints x=a+R and x=a-R in
series
Parametric Curves
Horizontal Tangents
(x)
when dy/dx=0 t=?
Equations for Parabola
y=a(x-h) +k
Directrix y=k-(1/4a)
Focus (h,k+1/4a)
x=a(y-k) +h
Directrix x=h-(1/4a)
Focus (h+1/4a,k)
Equations for Ellipses
(x-h) /a + (y-k)
/b =1
c=√(|a -b |)
eccentricity c/(max a|b)
foci (on major
axis)
when x= center and y=
center
y= horizontal axis
x= vertical axis
Trig Identities
sec (θ) tan (θ)+1
sin (θ) 1-cos (θ)
tan (θ) sec (θ)-1
cos (θ) [1+cos(2θ)]/2
sin (θ) [1-cos(2θ)]/2
double angle cos (θ) (1+cos(2θ)/2
double angle sin (θ) (1-cos(2θ)/2
Polar Coordinates & Area
Area 1/2 (f(x)) dx
One petal of r=sin(nθ) interval [0,π/n]
One petal of
r=cos(nθ)
[-π/2n,π/2n]
Polar > Cartesian x=rcos(θ) y=rsin(θ)
Cartesian > Polar tan(θ)=y/x x +y
=r
2 3n
1 3 5 n 2n+1
x2
3
n
24 n 2n
2 2
2 2
2 2
2
2
2
th
n
2
f(x) f(x)'
n n+1
2
2
' 2
n
2
2
2 2
2 2
2 2
2 2
22
2 2
2
2
2
2
2
2 2
2

Partial preview of the text

Download Ultimate Calculus II Cheat Sheet and more Cheat Sheet Calculus in PDF only on Docsity!

Calculus 2 Cheat Sheet

Taylor Series 1/1-x 1+x+x +x +... ∑ x sin(x) x -x /3!+x /5!- +...

∑ (-1) x /‐ (2n+1)! e 1+x+x /2!+‐ x /3!+...

∑ x /n!

cos(x) 1-x /2!+x /4!- +...

∑ (-1) x /(2n)!

centered around 0 (1/1-x only valid for -1<x<1.)

Trig Sub's √(x +a ) x=atan(θ) √(a -x ) x-asin(θ) √(x -a ) x=asec(θ) b-ax x= √b / √a sin(θ) ax +b x= √b / √a tan(θ) ax -b x= √b / √a sec(θ)

Convergence|Divergence test N term test for divergence

lim(n>∞) an

≠0 ∑an diverges

P-Test converge p>

diverge p≤

Limit Comparison

L=

lim(n>∞) (an/bn)

L≠0 series both diverge|c‐ onverge Ratio test r= lim(n>∞) |an+1/an|

r<1 converge r>1 diverge

Alternating series test

lim(n>∞) an

=0 ∑ (-1) an converges

Common Integrals ∫sin(x)dx -cos(x)+C ∫cos(x)dx sin(x)+C ∫tan(x)dx -ln(cos(x))+C ∫sec(x)dx ln(sec(x)+tan(x))+C ∫csc(x)dx -ln(csc(x)+cot(x))+C ∫cot(x)dx ln(sin(x))+C ∫sec (x)dx tan(x)+C ∫e dx e /f (x)+C ∫(1/x)dx ln(x)+C ∫(1/x )dx (x /n+1)+C ∫dx/√(a-x ) arcsin(x/√(a))+C ∫dx/x +a (1/√a)arctan(x/√a)+C

Important Derivatives d/dx arctan f(x) f (x)/x + d/dx sec(θ) sec(θ)tan(θ)

Power Series general form ∑ an(x-a) an = sequence of coeff. center x=a radius of conver‐ gence

R=lim(n>∞) |an/an+1|

endpoints x=a+R and x=a-R in series

Parametric Curves Horizontal Tangents (x)

when dy/dx=0 t=?

Equations for Parabola y=a(x-h) +k Directrix y=k-(1/4a) Focus (h,k+1/4a) x=a(y-k) +h Directrix x=h-(1/4a) Focus (h+1/4a,k)

Equations for Ellipses (x-h) /a + (y-k) /b =

c=√(|a -b |)

eccentricity c/(max a|b) foci (on major axis)

when x= center and y= center y= horizontal axis x= vertical axis

Trig Identities sec (θ) tan (θ)+ sin (θ) 1-cos (θ) tan (θ) sec (θ)- cos (θ) [1+cos(2θ)]/ sin (θ) [1-cos(2θ)]/ double angle cos (θ) (1+cos(2θ)/ double angle sin (θ) (1-cos(2θ)/

Polar Coordinates & Area Area ∫1/2 (f(x)) dx One petal of r=sin(nθ) interval [0,π/n] One petal of r=cos(nθ)

[-π/2n,π/2n]

Polar > Cartesian x=rcos(θ) y=rsin(θ) Cartesian > Polar tan(θ)=y/x x +y ‐ =r

2 3 n 1 3 5 n 2n+ 1

x 2 3

n

2 4 n 2n

2 2 2 2 2 2 2 2 2

th

n

2 f(x) f(x) '

n n+ 2 2

' 2

n

2

2

2 2 ‐ 2 2

2 2

2 2 2 2 2 2 2 2 2 2

2

2 2 2