Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Capítulos 27 al 31 Guyton, Apuntes de Fisiología

Se presentan los capítulos 27 al 31 de Guyton

Tipo: Apuntes

2021/2022

Subido el 29/12/2022

ipg7
ipg7 🇪🇨

1 documento

1 / 226

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Filtraciónglomerular,flujosanguíneorenaly
sucontrol
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Vista previa parcial del texto

¡Descarga Capítulos 27 al 31 Guyton y más Apuntes en PDF de Fisiología solo en Docsity!

Filtración glomerular, flujo sanguíneo renal y

su control

Filtración glomerular: el primer paso para la

formación de orina

El primer paso en la formación de orina es la filtración de grandes cantidades de líquidos a través de los capilares glomerulares en la cápsula de Bowman, casi 180 l al día. La mayor parte de este filtrado se reabsorbe, lo que deja únicamente 1 l aproximadamente de líquido para su excreción al día, si bien la tasa de excreción renal de líquidos puede ser muy variable dependiendo de la ingestión de líquidos. La alta tasa de filtración glomerular depende de la alta tasa de flujo sanguíneo renal, así como de las propiedades especiales de las membranas de los capilares glomerulares. En este capítulo se habla de las fuerzas físicas que determinan la filtración glomerular (FG), así como de los mecanismos fisiológicos que regulan la FG y el flujo sanguíneo renal.

Composición del filtrado glomerular

Como la mayoría de los capilares, los capilares glomerulares son relativamente impermeables a las proteínas, de manera que el líquido filtrado (llamado filtrado glomerular ) carece prácticamente de proteínas y elementos celulares, incluidos los eritrocitos. Las concentraciones de otros constituyentes del filtrado glomerular, como la mayoría de las sales y moléculas orgánicas, son similares a las concentraciones en el plasma. Las excepciones a esta generalización son algunas sustancias con un peso molecular bajo, como el calcio y los ácidos grasos, que no se filtran libremente porque están unidas parcialmente a las proteínas plasmáticas. Por ejemplo, casi la mitad del calcio plasmático y la mayor parte de los ácidos grasos plasmáticos están unidos a proteínas y estas porciones unidas no se filtran a través de los capilares glomerulares.

La FG es alrededor del 20% del flujo plasmático renal

La FG está determinada por: 1) el equilibrio entre las fuerzas hidrostáticas y coloidosmóticas que actúa a través de la membrana capilar, y 2) el coeficiente de filtración capilar (Kf), el producto de la

permeabilidad por el área superficial de filtro de los capilares. Los capilares glomerulares tienen una filtración mucho mayor que la mayoría de los otros capilares por una presión hidrostática glomerular alta y un gran Kf. En el adulto medio, la FG es de unos 125 ml/min, o 180 l/día. La

fracción del flujo plasmático renal que se filtra (la fracción de filtración) es de media de 0,2, lo que significa que alrededor del 20% del plasma que fluye a través del riñón se filtra a través de los capilares glomerulares (fig. 27-1 ). La fracción de filtración se calcula como sigue:

una capa de células epiteliales (podocitos) rodeando a la superficie externa de la membrana basal capilar (fig. 27-2 ). Juntas, estas capas forman la barrera de filtración que, a pesar de sus tres capas, filtra varios cientos de veces más agua y solutos que la membrana capilar habitual. Incluso con esta elevada intensidad de filtración, la membrana capilar glomerular evita normalmente la filtración de proteínas plasmáticas.

FIGURA 27-2 A. Ultraestructura básica de los capilares glomerulares. B. Sección transversal de la membrana capilar glomerular y sus principales componentes: el endotelio capilar, la membrana basal y el epitelio (podocitos).

La elevada filtración a través de la membrana capilar glomerular se debe en parte a sus especiales características. El endotelio capilar está perforado por cientos de pequeños agujeros, llamados

fenestraciones, similares a los capilares fenestrados que se encuentran en el hígado, aunque menores que las fenestraciones del hígado. Aunque la fenestración es relativamente grande, las proteínas celulares endoteliales están dotadas de muchas cargas negativas fijas que dificultan el paso de las proteínas plasmáticas. Rodeando al endotelio está la membrana basal, que consta de una red de colágeno y fibrillas de proteoglucanos que tienen grandes espacios a través de los cuales pueden filtrarse grandes cantidades de agua y de solutos. La membrana basal evita con eficacia la filtración de proteínas plasmáticas, en parte debido a las cargas eléctricas negativas fuertes de los proteoglucanos. La parte final de la membrana glomerular es una capa de células epiteliales que recubre la superficie externa del glomérulo. Estas células no son continuas, sino que tienen unas prolongaciones largas similares a pies (podocitos) que rodean la superficie externa de los capilares (v. fig. 27-2 ). Los podocitos están separados por espacios llamados poros en hendidura a través de los cuales se mueve el filtrado glomerular. Las células epiteliales, que tienen también cargas negativas, restringen de forma adicional la filtración de las proteínas plasmáticas. De este modo, todas las capas de la pared capilar glomerular proporcionan una barrera a la filtración de las proteínas plasmáticas.

La capacidad de filtración de los solutos se relaciona inversamente con su tamaño

La membrana capilar glomerular es más gruesa que la de la mayoría de los otros capilares, pero es también mucho más porosa y por tanto filtra líquido con mayor intensidad. A pesar de la elevada filtración, la barrera de filtración glomerular filtra de modo selectivo las moléculas basándose en su tamaño y en su carga eléctrica. La tabla 27-1 enumera el efecto del tamaño molecular sobre la capacidad de filtración de diferentes moléculas. Una capacidad de filtración de 1 significa que la sustancia se filtra tan libremente como el agua; una capacidad de filtración de 0,75 significa que la sustancia se filtra con una rapidez de solo un 75% la del agua. Obsérvese que los electrólitos como el sodio y los compuestos orgánicos pequeños como la glucosa se filtran libremente. A medida que la masa molecular de la molécula se acerca a la de la albúmina, su capacidad de filtración se reduce rápidamente, acercándose a cero.

Tabla 27-

Capacidad de filtración de las sustancias por los capilares glomerulares basada en la masa molecular

Sustancia Masa molecular Capacidad de filtración Agua 18 1 Sodio 23 1 Glucosa 180 1 Inulina 5.500 1 Mioglobina 17.000 0, Albúmina 69.000 0,

Las moléculas grandes con carga negativa se filtran con menor facilidad que las moléculas con el mismo tamaño molecular y cargas positivas

El diámetro molecular de la proteína plasmática albúmina es solo de unos 6 nm, mientras que los poros de la membrana glomerular tienen unos 8 nm (80 angstroms). Sin embargo, la albúmina no se filtra por su carga negativa y la repulsión electrostática ejercida por las cargas negativas de los proteoglucanos de la pared capilar glomerular.

glomerulares. Como resultado de esta pérdida de cargas negativas en la membrana basal, algunas de las proteínas de peso molecular bajo, en especial la albúmina, se filtran y aparecen en la orina, un trastorno conocido como proteinuria o albuminuria. La nefropatía por cambios mínimos es más común en niños pequeños pero también puede aparecer en adultos, sobre todo en los afectados por trastornos autoinmunitarios.

Determinantes de la FG

La FG está determinada por: 1) la suma de las fuerzas hidrostática y coloidosmótica a través de la membrana glomerular, que da lugar a la presión de filtración neta , y 2) el coeficiente glomerular Kf.

En una fórmula matemática, la FG es igual al producto del Kf y de la presión de filtración neta:

La presión de filtración neta representa la suma de las fuerzas hidrostática y coloidosmótica que favorecen o se oponen a la filtración a través de los capilares glomerulares (fig. 27-4 ). Estas fuerzas son: 1) la presión hidrostática dentro de los capilares glomerulares (presión hidrostática glomerular, PG), que favorece la filtración; 2) la presión hidrostática en la cápsula de Bowman (PB) fuera de los

capilares, que se opone a la filtración; 3) la presión coloidosmótica de las proteínas plasmáticas en el capilar glomerular (πG), que se opone a la filtración, y 4) la presión coloidosmótica de las proteínas

en la cápsula de Bowman (πB), que favorece la filtración. (En condiciones normales, la concentración

de proteínas en el filtrado glomerular es tan baja que la presión coloidosmótica en el líquido de la cápsula de Bowman se considera cero.)

El aumento del coeficiente de filtración capilar glomerular

incrementa la FG

El Kf es una medida del producto de la conductividad hidráulica y el área superficial de los capilares

glomerulares. El Kf no puede medirse directamente, pero se calcula experimentalmente dividiendo la

FG entre la presión de filtración neta:

Dado que la FG total en los dos riñones es de unos 125 ml/min y la presión de filtración neta 10 mmHg, el Kf normal se calcula en unos 12,5 ml/min/mmHg de presión de filtración. Cuando el Kf

se expresa por 100 g de peso renal, tiene un promedio de alrededor de 4,2 ml/min/mmHg, un valor unas 400 veces mayor que el Kf de la mayoría de los otros sistemas capilares del cuerpo; el Kf medio

de la mayoría de los otros tejidos del cuerpo es solo de unos 0,01 ml/min/mmHg por 100 g. Este Kf

alto de los capilares glomerulares contribuye a su filtración rápida de líquido. Aunque el aumento del Kf eleva la FG y la reducción del Kf la reduce, los cambios en Kf

probablemente no constituyen un mecanismo importante de regulación normal día a día de la FG. Pero algunas enfermedades reducen el Kf al reducir el número de capilares glomerulares

funcionantes (reduciendo así el área superficial para la filtración) o aumentando el espesor de la membrana capilar glomerular y reduciendo su conductividad hidráulica. Por ejemplo, la hipertensión incontrolada y la diabetes mellitus reducen gradualmente el Kf al aumentar el espesor de la membrana

basal capilar glomerular y, finalmente, dañando los capilares de forma tan grave que se pierde la función capilar.

El aumento de la presión hidrostática en la cápsula de

Bowman reduce la FG

Las medidas directas, usando micropipetas, de la presión hidrostática en la cápsula de Bowman y en diferentes puntos del túbulo proximal en animales experimentales indican que una estimación razonable de la presión en la cápsula de Bowman en los seres humanos es de unos 18 mmHg en condiciones normales. El aumento de la presión hidrostática en la cápsula de Bowman reduce la FG, mientras que reducir la presión aumenta la FG. Pero los cambios en la presión de la cápsula de Bowman no son normalmente un mecanismo importante de regulación de la FG. En ciertos estados patológicos asociados a la obstrucción de la vía urinaria, la presión en la cápsula de Bowman puede aumentar mucho y provocar una reducción grave de la FG. Por ejemplo, la precipitación del calcio o del ácido úrico puede dar lugar a «cálculos» que se alojen en la vía urinaria, a menudo en el uréter, lo que obstruye el flujo en la vía urinaria y aumenta la presión en la cápsula de Bowman. Esta situación reduce la FG y finalmente puede provocar hidronefrosis (distensión y dilatación de la pelvis y los cálices renales) y lesionar o incluso destruir el riñón a no ser que se alivie la obstrucción.

El aumento de la presión coloidosmótica capilar glomerular

reduce la FG

A medida que la sangre pasa desde la arteriola aferente a través de los capilares glomerulares hasta las arteriolas eferentes, la concentración plasmática de las proteínas aumenta alrededor de un 20% (fig. 27-5 ). La razón de este aumento es que alrededor de una quinta parte del líquido en los capilares se filtra a la cápsula de Bowman, lo que concentra las proteínas plasmáticas glomerulares que no se filtran. Suponiendo que la presión coloidosmótica normal del plasma que entra en los capilares glomerulares es de 28 mmHg, este valor habitualmente aumenta a unos 36 mmHg en el momento en que la sangre alcanza el extremo eferente de los capilares. Luego la presión coloidosmótica media de las proteínas plasmáticas en el capilar glomerular está a medio camino entre los 28 y los 36 mmHg, o unos 32 mmHg.

FIGURA 27-5 Aumento de la presión coloidosmótica del plasma que fluye a través del capilar glomerular. Lo normal es que alrededor de una quinta parte del líquido que hay en los capilares glomerulares se filtre hacia la cápsula de Bowman, lo que concentra las proteínas plasmáticas que no se filtran. Los aumentos en la fracción de filtración (filtración glomerular/flujo plasmático renal) aumentan la velocidad con la que la presión coloidosmótica del plasma aumenta a lo largo del capilar glomerular; los descensos en la fracción de filtración tienen el efecto opuesto.

De este modo, dos factores que influyen en la presión coloidosmótica capilar glomerular son: 1) la presión coloidosmótica del plasma arterial, y 2) la fracción del plasma filtrada por los capilares glomerulares (fracción de filtración). El aumento de la presión coloidosmótica del plasma arterial eleva la presión coloidosmótica capilar glomerular, lo que a su vez reduce la FG. Aumentar la fracción de filtración también concentra las proteínas plasmáticas y eleva la presión coloidosmótica glomerular (v. fig. 27-5 ). Como la fracción de filtración se define como FG/flujo plasmático renal, la fracción de filtración puede aumentarse elevando la FG o reduciendo el flujo plasmático renal. Por ejemplo, una reducción del flujo plasmático renal sin cambio inicial en la FG

FIGURA 27-6 Efecto de los aumentos en la resistencia arteriolar aferente ( RA , parte superior) o en la resistencia arteriolar eferente ( RE , parte inferior) en el flujo sanguíneo renal, la presión hidrostática glomerular (PG) y la filtración glomerular (FG).

La constricción de las arteriolas eferentes aumenta la resistencia al flujo de salida de los capilares glomerulares. Este mecanismo incrementa la presión hidrostática glomerular, y mientras que el aumento de la resistencia eferente no reduzca demasiado el flujo sanguíneo renal, la FG se eleva ligeramente (v. fig. 27-6 ). Sin embargo, como la constricción arteriolar aferente también reduce el flujo sanguíneo renal, la fracción de filtración y la presión coloidosmótica glomerular aumentan a medida que la resistencia arteriolar eferente aumenta. Por tanto, si la constricción de las arteriolas eferentes es intensa (incremento mayor de tres veces de la resistencia arteriolar eferente), el aumento de la presión coloidosmótica supera el incremento de la presión hidrostática capilar glomerular debido a la constricción arteriolar eferente. Cuando se produce esta situación, la fuerza neta de la filtración se reduce en realidad, lo que disminuye la FG. De este modo, la constricción arteriolar eferente tiene un efecto bifásico sobre la FG (fig. 27-7). Con niveles moderados de constricción la FG se incrementa ligeramente, pero con una constricción intensa, se reduce. La principal causa de la reducción final de la FG es la que sigue. A medida que la constricción eferente aumenta y la concentración de las proteínas plasmáticas aumenta, se produce un

incremento no lineal rápido en la presión coloidosmótica debido al efecto Donnan; cuanto mayor es la concentración de proteínas, más rápidamente aumenta la presión coloidosmótica debido a la interacción de los iones unidos a las proteínas plasmáticas, que también ejercen un efecto osmótico, como se comentó en el capítulo 16.

La tabla 27-2 resume los factores que pueden reducir la FG.

Tabla 27-

Factores que pueden reducir la filtración glomerular

AP, presión arterial sistémica; FG, filtración glomerular; Kf, coeficiente de filtración glomerular; PB, presión hidrostática en la cápsula de Bowman; PG, presión hidrostática capilar glomerular; RA, resistencia arteriolar aferente; RE, resistencia arteriolar eferente; πG, presión coloidosmótica de las proteínas plasmáticas en el capilar glomerular.

  • (^) Los cambios opuestos en los determinantes suelen aumentar la FG.

Flujo sanguíneo renal

En un hombre de 70 kg, el flujo sanguíneo combinado a través de los dos riñones es de unos 1.100 ml/min, o un 22% del gasto cardíaco. Considerando el hecho de que los dos riñones constituyen solo alrededor del 0,4% del peso total del cuerpo, podemos percibir fácilmente que reciben un flujo extremadamente grande de sangre comparados con otros órganos. Como en otros tejidos, el flujo sanguíneo aporta a los riñones nutrientes y se lleva los productos de desecho. Pero el elevado flujo renal supera mucho sus necesidades. El objetivo de este flujo adicional es aportar suficiente plasma para la elevada filtración glomerular necesaria para una regulación precisa de los volúmenes del líquido corporal y las concentraciones de solutos. Como podría esperarse, los mecanismos que regulan el flujo sanguíneo renal están muy ligados al control de la FG y a las funciones excretoras de los riñones.

Flujo sanguíneo renal y consumo de oxígeno

Con respecto al gramo de peso, los riñones consumen normalmente el doble de oxígeno que el encéfalo, pero tienen casi siete veces más flujo sanguíneo. Luego el oxígeno transportado a los riñones supera con mucho sus necesidades metabólicas, y la extracción arteriovenosa de oxígeno es relativamente baja comparada con la de la mayor parte de los restantes tejidos. Una gran fracción del oxígeno consumido por los riñones se relaciona con la elevada reabsorción del sodio en los túbulos renales. Si el flujo renal y la FG se reducen y se filtra menos sodio, se reabsorbe menos sodio y se consume menos oxígeno. Por tanto, el consumo renal de oxígeno varía en proporción con la reabsorción tubular renal de sodio, que a su vez está muy relacionada con la FG y la velocidad de filtración del sodio (fig. 27-8 ). Si la filtración glomerular cesa por completo, también lo hace la reabsorción renal de sodio, y el consumo de oxígeno se reduce a una cuarta parte de lo normal. Este consumo residual de oxígeno refleja las necesidades metabólicas de las células renales.

La presión en la arteria renal es aproximadamente igual a la presión arterial sistémica, y la presión en la vena renal es de media de 3-4 mmHg en la mayoría de las condiciones. Como en otros lechos vasculares, la resistencia vascular total a través de los riñones está determinada por la suma de las resistencias en segmentos vasculares individuales, incluidas las arterias, las arteriolas, los capilares y las venas (tabla 27-3 ).

Tabla 27-

Presiones y resistencias vasculares aproximadas en la circulación de un riñón normal

La mayor parte de la resistencia vascular renal reside en tres segmentos principales: las arterias interlobulillares, las arterias aferentes y las arteriolas eferentes. La resistencia de estos vasos está controlada por el sistema nervioso simpático, varias hormonas y mecanismos de control locales internos, como se comentará más adelante. Un aumento de la resistencia en cualquiera de los segmentos vasculares de los riñones tiende a reducir el flujo sanguíneo renal, mientras que una reducción en la resistencia vascular aumenta el flujo sanguíneo renal si las presiones en la vena y arteria renales permanecen constantes. Aunque los cambios en la presión arterial ejercen cierta influencia sobre el flujo sanguíneo renal, los riñones tienen mecanismos efectores para mantener el flujo sanguíneo renal y la FG relativamente constantes entre los 80 y 170 mmHg de presión arterial, un proceso llamado autorregulación. Esta capacidad de autorregulación se produce a través de mecanismos que son completamente intrínsecos, como se comentará más adelante en este capítulo.

El flujo sanguíneo en los vasos rectos de la médula renal es

muy bajo comparado con el flujo en la corteza renal

La parte externa del riñón, la corteza renal, recibe la mayor parte del flujo sanguíneo renal. El flujo sanguíneo en la médula renal supone solo el 1-2% del flujo sanguíneo renal total. El flujo en la médula renal procede de una porción especializada del sistema capilar peritubular llamada vasos rectos. Estos vasos descienden hasta la médula paralelos a las asas de Henle y después vuelven de nuevo junto a las asas de Henle hasta la corteza antes de vaciarse en el sistema venoso. Como se comenta en el capítulo 29, los vasos rectos son importantes para que los riñones puedan formar una orina concentrada.

Control fisiológico de la filtración glomerular y del

flujo sanguíneo renal

Los determinantes de la FG que son más variables y están sujetos al control fisiológico son la presión hidrostática glomerular y la presión coloidosmótica capilar glomerular. Estas variables, a su vez, están influenciadas por el sistema nervioso simpático, las hormonas y los autacoides (sustancias vasoactivas que liberan los riñones y actúan a nivel local) y otros controles de retroalimentación que son intrínsecos a los riñones.

La intensa activación del sistema nervioso simpático reduce

la FG

Casi todos los vasos sanguíneos de los riñones, incluidas las arteriolas aferentes y eferentes, están muy inervados por fibras nerviosas simpáticas. La fuerte activación de los nervios simpáticos renales puede contraer las arteriolas renales y reducir el flujo sanguíneo renal y la FG. La estimulación moderada o leve ejerce poca influencia sobre el flujo sanguíneo renal y la FG. Por ejemplo, la activación refleja del sistema nervioso simpático debida a descensos moderados de la presión en los barorreceptores del seno carotídeo o en los receptores cardiopulmonares ejerce poca influencia sobre el flujo sanguíneo renal o la FG. Sin embargo, tal como se expuso en el capítulo 28, incluso aumentos ligeros en la actividad simpática renal pueden provocar un descenso en la excreción de sodio y agua al incrementar la reabsorción tubular renal. Los nervios simpáticos renales parecen más importantes para reducir la FG durante los trastornos agudos y graves que duran de varios minutos a unas pocas horas, como los provocados por las reacciones de defensa, la isquemia encefálica o la hemorragia grave. En la persona sana en reposo, el tono simpático ejerce poca influencia sobre el flujo sanguíneo renal.

Control hormonal y por autacoides de la circulación renal

Varias hormonas y autacoides pueden influir en la FG y en el flujo sanguíneo renal, como se resumen en la tabla 27-.

Tabla 27-

Hormonas y autacoides que influyen en la filtración glomerular (FG)

Hormona o autacoide Efecto sobre la FG Noradrenalina ↓ Adrenalina ↓ Endotelina ↓ Angiotensina II ↔ (impide ↓) Óxido nítrico derivado del endotelio ↑ Prostaglandinas ↑

La noradrenalina, la adrenalina y la endotelina contraen los vasos sanguíneos renales y reducen la FG

Las hormonas que constriñen las arteriolas aferentes y eferentes, lo que reduce la FG y el flujo