Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

circuitos digitales IPN , Guías, Proyectos, Investigaciones de Circuitos Digitales

tarea IPN ditales examen a titulo de suficiencia esime ZACATENCO

Tipo: Guías, Proyectos, Investigaciones

2017/2018
En oferta
30 Puntos
Discount

Oferta a tiempo limitado


Subido el 23/03/2018

alberto-martinez-2
alberto-martinez-2 🇲🇽

5

(1)

1 documento

1 / 4

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
INSTITUTO POLITECNICO NACIONAL
ESIME ZACATENCO - ACADEMIA DE COMPUTACION I.C.E.
GUIA DE ESTUDIO DE CIRCUITOS DIGITALES
1
1. Mediante la aplicación de postulados y teoremas del álgebra de Boole, obtener la forma
mínima de las siguientes funciones de conmutación
𝑋(𝑎, 𝑏, 𝑐)=𝑎𝑏𝑐 + 𝑎𝑏
(𝑎 𝑐)
𝑌(𝑎, 𝑏, 𝑐, 𝑑 )=[𝑎 (𝑏 𝑐)
][𝑎 + 𝑎𝑑][𝑏
+ 𝑐 + 𝑑][𝑎𝑑 + 𝑏
+ 𝑐]
𝑍(𝑎, 𝑏, 𝑐, 𝑑 )=𝑎𝑏𝑐 +𝑎𝑏𝑑 + 𝑎𝑏𝑐 + 𝑐𝑑 + 𝑏𝑑
𝐺(𝑥, 𝑦, 𝑧)=(𝑦 + 𝑧)
(𝑧 + 𝑥𝑧)
(𝑥 + 𝑧)(𝑥𝑦 + 𝑥𝑧)
2. Para las siguientes funciones de conmutación, dibujar el diagrama de los circuitos que
generan la misma tabla de verdad utilizando para la función F un decodificador y la menor
cantidad posible de compuertas de 3 entradas; mientras que para G utilice un multiplexor
con la variable b conectada en las entradas
𝐹(𝑎, 𝑏, 𝑐, 𝑑 )=(𝑎 + 𝑏 + 𝑐
+ 𝑑
) ( 𝑎 𝑐
𝑑)
𝐺(𝑎, 𝑏, 𝑐 , 𝑑) = 𝑎𝑐 𝑑 + 𝑎 𝑏𝑐 + 𝑎𝑏𝑑 + 𝑏𝑐𝑑 + 𝑎𝑏𝑐
3. Se desea construir un circuito lógico que recibe un dígito BCD y mediante dos terminales
de salida llamadas F1 y F2 determina las siguientes características: a) La terminal F1
entregará un estado alto cuando el dígito presente paridad impar; b) La terminal F2
entregará un estado alto cuando el dígito sea una potencia entera de base 2.
Utilizar un decodificador y la menor cantidad posible de compuertas de 3 entradas en el
circuito de la función F1.
Para F2 deberá utilizar un multiplexor con la variable de menor peso conectada en las
entradas del multiplexor. En ambos casos deberá dibujar el diagrama del circuito para que
su respuesta sea válida.
4. En una fábrica se cuenta con un dispositivo de 5 fotoceldas (ver la figura 1) sobre el cual
se colocan tarjetas metálicas que presentan ranuras utilizadas en la representación de
patrones. Las tarjetas metálicas son iluminadas mediante una lámpara fluorescente, y cada
una de las fotoceldas posee un circuito electrónico que entrega un ‘1’ lógico cuando la
fotocelda es iluminada y un ‘0’ en caso contrario
Obtener mediante mapa de Karnaugh, la ecuación en forma mínima de una función de
conmutación que genera un estado alto cuando se detectan los siguientes patrones
a
c
b
e
d
Figura 1. Arreglo de fotoceldas para
la lectura de patrones.
pf3
pf4
Discount

En oferta

Vista previa parcial del texto

¡Descarga circuitos digitales IPN y más Guías, Proyectos, Investigaciones en PDF de Circuitos Digitales solo en Docsity!

GUIA DE ESTUDIO DE CIRCUITOS DIGITALES

  1. Mediante la aplicación de postulados y teoremas del álgebra de Boole, obtener la formamínima de las siguientes funciones de conmutación

𝑋(𝑎, 𝑏, 𝑐) = 𝑎𝑏𝑐 + 𝑎𝑏̅ ∙ (𝑎̅ ∙ 𝑐̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑌(𝑎, 𝑏, 𝑐, 𝑑) = [𝑎̅ ∙ (𝑏 ⊕ 𝑐)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅] ⋅ [𝑎̅ + 𝑎𝑑] ∙ [𝑏̅ + 𝑐̅ + 𝑑̅] ∙ [𝑎𝑑 + 𝑏̅ + 𝑐̅]̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑍(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎̅𝑏𝑐̅ + 𝑐𝑑 + 𝑏𝑑̅ 𝐺(𝑥, 𝑦, 𝑧) = (𝑦̅ + 𝑧)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(𝑧̅ + 𝑥𝑧)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ̅∙ (𝑥̅ + 𝑧̅)(𝑥̅𝑦 + 𝑥̅𝑧)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

  1. Para las siguientes funciones de conmutación, dibujar el diagrama de los circuitos quegeneran la misma tabla de verdad utilizando para la función F un decodificador y la menor cantidad posible de compuertas de 3 entradas; mientras que paracon la variable b conectada en las entradas G utilice un multiplexor

𝐹(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎̅ + 𝑏 + 𝑐̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ̅+ 𝑑̅̅̅̅ ) ( 𝑎 ⊕ 𝑐̅̅̅̅̅̅̅̅ ⊕ 𝑑) 𝐺(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎𝑐𝑑 + 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑏𝑐𝑑 + 𝑎𝑏𝑐

  1. Se desea construir un circuito lógico que recibe un dígito BCD y mediante dos terminalesde salida llamadas F1 y F2 determina las siguientes características: a) La terminal F entregará un estado alto cuando el dígito presente paridad impar; b) La terminal F2entregará un estado alto cuando el dígito sea una potencia entera de base 2. Utilizar un decodificador y la menor cantidad posible de compuertas de 3 entradas en elcircuito de la función F1. Para F2 deberá utilizar un multiplexor con la variable de menor peso conectada en las entradas del multiplexor. En ambos casos deberá dibujar el diagrama del circuito para que su respuesta sea válida.
  2. En una fábrica se cuenta con un dispositivo de 5 fotoceldas (ver la figura 1) sobre el cual se colocan tarjetas metálicas que presentan ranuras utilizadas en la representación de patrones. Las tarjetas metálicas son iluminadas mediante una lámpara fluorescente, y cada una de las fotoceldas posee un circuito electrónico que entrega un ‘1’ lógico cuando la fotocelda es iluminada y un ‘0’ en caso contrario

Obtener mediante mapa de Karnaugh, la ecuación en forma mínima de una función deconmutación que genera un estado alto cuando se detectan los siguientes patrones

a c

b

e

d

Figura 1. Arreglo de fotoceldas para la lectura de patrones.

GUIA DE ESTUDIO DE CIRCUITOS DIGITALES Considere que en el proceso de fabricación jamás se producen tarjetas que presentenmenos de 2 ranuras o que generen estados altos únicamente en las siguientes ranuras: de, ce, bce, ade y abde. Considere la variable a como el MSB.

  1. En el laboratorio de una compañía químico-farmacéutica se elaboran distintas soluciones apartir de los componentes v , w , x , y y z. Estas sustancias pesan 1600, 800, 400, 200 y 100 mgrs. respectivamente. Las soluciones son depositadas en frascos que se transportan pormedio de una banda hasta la báscula. Si el peso de la mezcla de componentes es de 400, 600, 700, 1200, 1500, 1700, 2000, 2200, 2300 o 2500 mgs, un dispositivo electromecánicoagrega un compuesto final a la mezcla, sella el frasco y lo separa de la banda. En el resto de los casos el frasco se deja abierto y se lleva por medio de la banda a un contenedor deproductos no aprobados. Debido a la forma en que está estructurado el sistema de producción de las soluciones, noes posible que lleguen a la báscula frascos vacíos o que contengan las mezclas formadas únicamente por los componentes:mapa de Karnaugh la función en forma mínima del circuito que con un ‘1’ lógico activará el z, w, wz, wy, wxy, vwx y vwxy. Determinar mediante sistema electromecánico para sellar y separar los envases de la banda.
  2. Anote la solución manual de las siguientes operaciones aritméticas (no se permite el usode calculadora) y la información solicitada en la tabla:

Operación: (^) - AB547DE + 439A 8FE0 +D249 9EAB - 8000 800A Resultado: Acarreo final: Signo del resultado:

  1. Diseñar y dibujar el diagrama del circuito mínimo de un contador síncrono, ascendente,cíclico, módulo 6. Utilice flip flops tipo JK.
  2. Diseñar un circuito contador síncrono, DESCENDENTE, cíclico, módulo 10 (que siga lasecuencia del código 84-2-1). Utilice flip flops tipo D y obtenga las ecuaciones de excitación en forma mínima.
  3. Diseñar un circuito secuencial síncrono que mediante el uso de flip flops T ejecute elsiguiente diagrama de estados

0 1 3 2 6

13 12 4 5 7

GUIA DE ESTUDIO DE CIRCUITOS DIGITALES

  1. Reducir la siguiente tabla de estados por el método de implicación, asignar los estados en código Gray y diseñar el circuito secuencial utilizando FF’s tipo JK. Para que la respuesta sea válida deberá dibujar el diagrama del circuito mínimo. Q(t) x=0 x= 12 2,06,0 3,05, 34 2,12,0 6,11, 56 4,04,0 3,05,
  2. Un circuito detonador de explosivos deberá producir la chispa de la explosión cuandoreciba la secuencia de entrada 0111 (sin traslapes). Dibujar el diagrama de estados y diseñar el circuito correspondiente con flip flops tipo JK y asignando estados en códigoGray. Dibujar el diagrama del circuito para que su respuesta sea válida.
  3. Diseñar y dibujar el diagrama de un circuito capaz de detectar una secuencia formada portres estados altos consecutivos. El circuito deberá ser capaz de detectar secuencias traslapadas. Utilice asignación de estados en código gray y flip flops tipo SR.

EJERCICIOS ADICIONALES.

Se recomienda además, consultar y resolver los problemas de final de capítulo del libro: “ANÁLISIS Y DISEÑO DE CIRCUITOS LÓGICOS DIGITALES” Víctor P. Nelson; H. Troy Nagle; Bill D Carroll y J. David IrwinPrentice Hall, 1996.

Capítulo 2, problemas 2.1, 2.2, 2.20 al 2.. Capítulo 3, problemas 3.4, 3.5, 3.7, 3.8, 3.17, 3.24, 3.25, 3.48 al 3.. Capítulo 4, problemas 4.19c, 4.24 al 4.. Capítulo 8, problemas 8.6, 8.8 al 8.. Capítulo 9, problemas 9.1, 9.5, 9.6 y 9.