











Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
diapositivas de curso de hidrlogia
Tipo: Diapositivas
1 / 19
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
- Hidrogramas El hidrograma, es la representación gráfica de las variaciones del caudal con respecto al tiempo, en orden cronológico, en un lugar dado de la corriente. En las Figura a y Figura b se presenta los hidrogramas correspondientes a una tormenta aislada y a una sucesión de ellas respectivamente (hidrograma anual). Analizando el hidrograma correspondiente a una tormenta aislada (Figura 7.5a) se observa en el hietograma de la Figura 7.6 la precipitación que produce infiltración, y la que produce escorrentía directa, ésta última se denomina precipitación neta o efectiva. El área bajo el hidrograma, es el volumen de agua que ha pasado por el punto de aforo, en el intervalo de tiempo expresado en el hidrograma. Del análisis de la Figura 7.6, es posible distinguir las siguientes partes: Punto de levantamiento (A). En este punto, el agua proveniente de la tormenta bajo análisis comienza a llegar a la salida de la cuenca y se produce después de iniciada la tormenta, durante la misma o incluso cuando ha transcurrido ya algún tiempo después que cesó de llover,
dependiendo de varios factores, entre los que se pueden mencionar el área de la cuenca, su sistema de drenaje y suelo, la intensidad y duración de la lluvia, etc. Pico del hidrograma (B). Es el caudal máximo que se produce por la tormenta. Con frecuencia es el punto más importante de un hidrograma para fines de diseño. Punto de Inflexión (C). En este punto es aproximadamente donde termina el flujo sobre el terreno, y de aquí en adelante, lo que queda de agua en la cuenca escurre por los canales y como escurrimiento subterráneo. Fin del escurrimiento directo (D). De este punto en adelante el escurrimiento es solo de origen subterráneo. Normalmente se acepta como el punto de mayor curvatura de la curva de recesión, aunque pocas veces se distingue de fácil manera. Curva de concentración o rama ascendente, es la parte que corresponde al ascenso del hidrograma, que va desde el punto de levantamiento hasta el pico. Curva de recesión o rama descendente, es la zona correspondiente a la disminución progresiva del caudal, que va desde el pico (B) hasta el final del escurrimiento directo (D). Tomada a partir del punto de inflexión (C), es una curva de vaciado de la cuenca (agotamiento). Curva de agotamiento, es la parte del hidrograma en que el caudal procede solamente de la escorrentía básica. Es importante notar que la curva de agotamiento, comienza más alto que el punto de inicio del escurrimiento directo (punto de agotamiento antes de la crecida), debido a que parte de la precipitación que se infiltro esta ahora alimentando el cauce. En hidrología, es muy útil ubicar el punto de inicio de la curva de agotamiento (punto D en la Figura 7.6), a fin de determinar el caudal base y el caudal directo. 7.4.3.1.- Definiciones importantes Tiempo de pico (tp), q ue a veces se denomina tiempo de demora , es el intervalo entre el inicio del período de precipitación neta y el caudal máximo. Es decir es el tiempo que transcurre desde que inicia el escurrimiento directo hasta el pico del hidrograma (Figura 7.6). Tiempo base (tb), es el tiempo que dura el escurrimiento directo, o sea es el intervalo comprendido entre el comienzo y el fin del escurrimiento directo (Figura 7.6). Tiempo de retraso (tr), es el intervalo del tiempo comprendido entre los instantes que corresponden, al centro de gravedad del hietograma de la tormenta, y al centro de gravedad del hidrograma (Figura 7.9). Algunos autores reemplazan el centro de gravedad por el máximo, ambas definiciones serian equivalentes si los diagramas correspondientes fueran simétricos.
importantes, es decir, precipitaciones intensas y prolongadas, producen un aumento significativo en el escurrimiento de las corrientes. Figura 7.10. Escurrimiento base y directo Las características del escurrimiento directo y del flujo base, difieren tanto, que deben tratarse separadamente en los problemas que involucran períodos cortos de tiempo. 7.4.3.4.- Separación del flujo base Se conoce varias técnicas para separar el flujo base del escurrimiento directo de un hidrograma, éstos se pueden agrupar en métodos simplificados y métodos aproximados. 7.4.3.4.1.- Métodos simplificados para la separación del flujo base a). Un método simple, consiste en admitir como límite del escurrimiento base, la línea recta AA’ (Figura 7.11a), que une el punto de origen del escurrimiento directo y sigue en forma paralela al eje X. Este método da buenos resultados especialmente en tormentas pequeñas donde los niveles freáticos no se alteran. En general sobrestima el tiempo base y el volumen de escurrimiento directo. b). Como variante, se puede asignar al hidrograma del flujo base, un trazado siguiendo la línea recta AD, donde A es el punto de levantamiento y el punto D es el punto de inicio de la curva de agotamiento o donde termina el punto final del escurrimiento directo.(Figura 7.11b). c). Otra fórmula también subjetiva, es la de admitir para el hidrograma antes citado, la línea ACD (Figura 7.11c); el segmento AC esquematiza la porción de la curva de descenso partiendo del caudal correspondiente al comienzo de la subida, y extendiéndose hasta el instante del pico del hidrograma, el segmento CD es una recta, que une el punto C con el punto D, escogido igual que en el proceso anterior. 7.4.3.4.2.- Método aproximado Este método consiste en dibujar en papel semilogarítmico la curva de descenso. La curva de descenso se puede representar en forma matemática por una ecuación del tipo: Donde:
Q = ordenada del hidrograma de descenso para el tiempo t Qo = ordenada del hidrograma de descenso para el tiempo to K = constante que depende de la cuenca De la ecuación (7.15) se tiene: Al trazar la gráfica Q contra Qo en papel semilogarítmico, y la recta con pendiente K, se obtiene la curva de descenso, conocida la curva de descenso puede seguirse cualquiera de los métodos simplificados (b, c, etc.). Ninguno de estos procedimientos de separación es completamente preciso; sin embargo, se puede aceptar un error en la posición del punto D de una o dos veces la duración de la tormenta, pues el área bajo esta parte del hidrograma es, en general, solo un pequeño porcentaje del volumen total escurrido. 7.4.3.5.- Hidrograma Unitario El “Hidrograma Unitario” es el hidrograma de escorrentía directa causado por una lluvia efectiva unitaria (1 cm ó 1 mm.), de intensidad constante a lo largo de la duración efectiva (de) y distribuida uniformemente sobre el área de drenaje (Sherman, 1932),(Figura 7.12 a). El método del Hidrograma Unitario (HU) es aplicado a cuencas pequeñas a medianas (Área<5000 Km2) para obtener el Hidrograma Real (HR) correspondiente a cualquier tormenta recibida por la cuenca. a) Distribución uniforme, la precipitación efectiva (lluvia neta) esta uniformemente distribuida en toda el área de la cueca. b) Intensidad uniforme, la precipitación efectiva es de intensidad uniforme en el periodo t horas. c) Tiempo base constante, los hidrogramas generados por tormentas de la misma duración tienen el mismo tiempo base (tb) a pesar de ser diferentes las laminas de precipitación efectiva, independientemente del volumen total escurrido (Figura 7.12b). d) Linealidad o proporcionalidad, las ordenadas de todos los hidrogramas de escurrimiento directo con el mismo tiempo base, son proporcionales al volumen total de escurrimiento directo (al volumen total de lluvia efectiva). Como consecuencia, las ordenadas de dichos hidrogramas son proporcionales entre sí (Figura 7.12c). e) Superposición de causas y efectos, el hidrograma resultante de un período de lluvia dado, puede superponerse a hidrogramas resultantes de períodos lluviosos precedentes (Figura 7.12d). Como los Hidrogramas producidos por las diferentes partes de la tormenta se asume
muestra sólo la contribución del exceso de precipitación, o la escorrentía directa. (Figura 7.14b) Paso 3: Calcular el volumen de escorrentía directa Obtener el volumen de escurrimiento directo (Ve), del hidrograma de la tormenta, para lo cual, transformar los escurrimientos directos a volumen y acumularlos. Figura 7.15. Volumen de escorrentía directa Paso 4: Obtener la altura de precipitación en exceso o efectiva (hp), dividiendo el volumen de escurrimiento directo, entre el área de la cuenca (A). Esta lamina de escorrentia directa es, por definicion, igual a la lámina de precipitacion efectiva. Paso 5: Obtener las ordenadas del hidrograma unitario, dividiendo las ordenadas del escurrimiento directo entre la altura de precipitación efectiva (lluvia en exceso). La duración en exceso (tiempo efectivo que provoca altura de preciptiacion efectiva, hpe), correspondiente al hidrograma unitario se obtiene a partir del hietograma de la tormenta y el índice de infiltración media, su cálculo se explica en el inciso 7.4.3.7.
7.4.3.5.3.- Aplicaciones del hidrograma unitario Conocido el H.U. de una cuenca para una cierta duración, permite: Obtener el hidrograma de escorrentía directa correspondiente a una tormenta simple de igual duración y una lámina cualquiera de precipitación efectiva o a una tormenta compuesta de varios periodos de igual duración y láminas cualesquiera de precipitación efectiva (hipótesis de H.U., método superposición). Predecir el impacto de la precipitación sobre el caudal. Predecir crecidas proporcionando estimaciones de caudales del río a partir de la precipitación. Calcular el caudal que se producirá en determinado período de tiempo en base a una cantidad de precipitación efectiva. Ejemplo 7.5 Obtener el hidrograma unitario de una tormenta, con los siguientes datos: Área de la cuenca: A = 3077.28 Km2 = 3077.28x10^6 m^2 Duración en exceso: de = 12 horas Hidrograma de la tormenta fila 2 de la Tabla 7. 5 Solución: Para calcular el volumen de escurrimiento directo (Ve), primero se resta el Qbase, luego se suman, y como los caudales se dividieron a un intervalo de tiempo de 12 horas: ( horas = 4.32x10^4 seg), el volumen Ve será: La altura de precipitación en exceso (hp), será:
Ejemplo
Tiempo hr. (1) HU de= Hr m3/s (5) Curva S deducida a partir de un HU para de=12hr (m3/s) (2) Curva S desplazada 24 hr. (3) Diferencia de ordenadas (4)=(2)-(3) H.U. Para de=24 hr K*(4) m3/s (5) 0 0.0 0.0 0.0 0 12 3.7 3.7 3.7 1. 24 25.3 29.0 0.0 29.0 14. 36 18.3 47.3 3.7 43.6 21. 48 11.5 58.8 29.0 29.8 14. 60 6.4 65.2 47.3 17.9 8. 72 3.0 68.2 58.8 9.4 4. 84 1.8 70.0 65.2 4.8 2. 96 1.0 71.0 68.2 2.8 1. 108 0.2 71.2 70.0 1.2 0. Tabla 7.8. Cálculo del HU para un de'= 24 hr a partir de la curva S, obtenida para de=12 hr
Figura 7.23. Hidrograma unitario para d’e=24 hrs Método hidrogramas unitarios sintéticos
Hidrograma unitario triangular
0 12 24 36 48 60 72 84 96 108 120 Q (m3/S) Tiempo Hrs
H.U. de =12 hrs Curva S H.U. de =24 hrs
2. En una cuenca con área de 1080 km2, se tiene el hidrograma de ecurrimiento total y el hietograma de tormenta que lo produjo figura