


Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
consulta temas estadística permutación combinaciones, combinaciones sin repetición y sus respectivos ejemplos
Tipo: Guías, Proyectos, Investigaciones
1 / 4
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Permutación Una permutación es la variación del orden o posición de los elementos de un conjunto ordenado o una tupla. La definición intuitiva de permutación, como reordenamientos de los elementos de un conjunto se formaliza con el uso del lenguaje de funciones matemáticas. Ejemplos :
. Combinaciones sin repetición Así funciona la lotería. Los números se eligen de uno en uno, y si tienes los números de la suerte (da igual el orden) ¡entonces has ganado! La manera más fácil de explicarlo es: imaginemos que el orden sí importa (permutaciones), después lo cambiamos para que el orden no importe. Volviendo a las bolas de billar, digamos que queremos saber qué 3 bolas se eligieron, no el orden. Ya sabemos que 3 de 16 dan 3360 permutaciones. Pero muchas de ellas son iguales para nosotros, porque no nos importa el orden. Por ejemplo, digamos que se tomaron las bolas 1, 2 y 3. Las posibilidades son: El orden importa El orden no importa 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1
Así que las permutaciones son 6 veces más posibilidades. De hecho hay una manera fácil de saber de cuántas maneras "1 2 3" se pueden ordenar, y ya la sabemos. La respuesta es: 3! = 3 × 2 × 1 = 6 (Otro ejemplo: 4 cosas se pueden ordenar de 4! = 4 × 3 × 2 × 1 = 24 maneras distintas, ¡prueba tú mismo!) Así que sólo tenemos que ajustar nuestra fórmula de permutaciones para reducir por las maneras de ordenar los objetos elegidos (porque no nos interesa ordenarlos): Esta fórmula es tan importante que normalmente se la escribe con grandes paréntesis, así:
Ejemplo Una distribución tiene x = 140 y σ = 28.28 y otra x = 150 y σ = 24. ¿Cuál de las dos presenta mayor dispersión? La primera distribución presenta mayor dispersión.