










Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
practicas que te permitiran pasar el examen
Tipo: Exámenes
1 / 18
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
M16/5/MATHL/HP1/ENG/TZ2/XX/M
18 pages
However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct FT working shown, award FT marks as appropriate but do not award the final A1 in that part.
Examples
Correct answer seen Further working seen Action
1. 8 2
(incorrect decimal value)
Award the final A
(ignore the further working)
2. 1 sin 4 4
x (^) sin x Do not award the final A
3. log^ a^ −^ log b log (^ a^ −^ b ) Do not award the final A
3 N marks
Award N marks for correct answers where there is no working.
4 Implied marks
Implied marks appear in brackets eg (M1) , and can only be awarded if correct work is seen or if
implied in subsequent working.
5 Follow through marks
Follow through ( FT ) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s). To award FT marks, there must be working present and
not just a final answer based on an incorrect answer to a previous part.
answer(s).
but M marks may be awarded if appropriate.
sin θ =1.
6 Misread
If a candidate incorrectly copies information from the question, this is a misread ( MR ). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate
that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an
M mark, but award all others so that the candidate only loses one mark.
final answer(s).
7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does
not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.
8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme.
If in doubt, contact your team leader for advice.
9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
bracket or the form in brackets (if it is seen).
Example : for differentiating f ( x ) = 2 sin (5 x − 3), the markscheme gives
f ′^ ( ) x = (^) ( 2cos(5 x −3) 5 (^) ) A
Award A1 for ( 2cos(5 x^ −3) 5^ ) , even if 10 cos (5 x − 3)is not seen.
10 Accuracy of Answers
Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to
the required accuracy. When this is not specified in the question, all numerical answers should be
given exactly or correct to three significant figures. Please check work carefully for FT.
sin θ =1.
( = 10cos(5 x −3))
1. EITHER
eliminating a variable, x , for example to obtain y + 3 z = − 16 and − 5 y − 3 z = 8 M1A
attempting to find the value of one variable M
point of intersection is ( 1, 2,− − 6) A1A1A
OR
attempting row reduction of relevant matrix, eg.
M
correct matrix with two zeroes in a column, eg.
A
further attempt at reduction M
point of intersection is ( 1, 2,− − 6) A1A1A
[6 marks]
2. x = − 1
A1A1A1A1A
Note: Award A1 for correct shape, A1 for x = − 1 clearly stated and asymptote shown,
A1 for y = 3 clearly stated and asymptote shown, A1 for
and A1 for (0, 2).
[5 marks]
3. (a) EITHER
use of a diagram and trig ratios
eg ,
tan cot
from diagram, tan 2
R
OR
use of
π sin π 2 cos tan 2 π sin cos 2
R
THEN
π cot tan 2
AG
[1 mark]
(b) [ ]
cot cot 2 tan tan
d arctan 1
x x x
α α α α
(A1)
Note: Limits (or absence of such) may be ignored at this stage.
π
π 2 2
[4 marks]
Total [5 marks]
6. (a)
n n n n n nx x x
A1A
Note: Award A1 for the first two terms and A1 for the next two terms.
Note: Accept
n
r
notation.
Note: Allow the terms seen in the context of an arithmetic sum.
Note: Allow unsimplified terms, eg , those including powers of 1 if seen.
[2 marks]
(b) (i) EITHER
using u 3 (^) − u 2 (^) = u 4 (^) − u 3 (M1)
n n n n n n n n
attempting to remove denominators and expanding (or vice versa) M 2 3 2 3 n − 9 n = n − 6 n + 5 n (or equivalent, eg ,
2 3 2 6 n − 12 n = n − 3 n + 2 n ) A
OR
using u 2 (^) + u 4 (^) = 2 u 3 (M1)
( 1)( 2) ( 1) 6
n n n n n n
− −
attempting to remove denominators and expanding (or vice versa) M 3 2 2
THEN
3 2 n − 9 n + 14 n = 0 AG
(ii) n n ( − 2)( n − 7) = 0 or ( n − 2)( n − 7) = 0 (A1)
n = 7 only (as n ≥ 3 ) A
[6 marks]
Total [8 marks]
7. (a) P( A ∪ B ) = P( ) A + P( B ) − P( A ∩ B )
= P( ) A + P( B ) − P( )P( A B ) (M1)
2 = p + p − p A
2 = 2 p − p AG
[2 marks]
(b)
P (^) ( ( )) P( | ) P( )
(M1)
Note: Allow (^) P ( A ∩ A ∪ B )if seen on the numerator.
(A1)
2 2
p
p p
A
2 p
A
[4 marks]
Total [6 marks]
8. let P( ) n be the proposition that (^) ( )
2 n n + 5 is divisible by 6 for n
∈
consider P(1) :
when n = 1 , (^) ( ) ( )
2 2 n n + 5 = 1 × 1 + 5 = 6 and so P(1) is true R
assume P( ) k is true ie , (^) ( )
2 k k + 5 = 6 m where k , m
∈ M
Note: Do not award M1 for statements such as “let n = k ”.
consider P( k + 1):
( )
2 ( k + 1) ( k + 1) + 5 M
( )
2 = ( k + 1) k + 2 k + 6
3 2 = k + 3 k + 8 k + 6 (A1)
( ) ( )
3 2 = k + 5 k + 3 k + 3 k + 6 A
( )
2 = k k + 5 + 3 ( k k + 1) + 6 A
k k ( + 1)is even hence all three terms are divisible by 6 R
P( k + 1)is true whenever P( ) k is true and P(1) is true, so P( ) n is true for n
∈ R
Note: To obtain the final R1 , four of the previous marks must have been awarded.
[8 marks]
10. (a) EITHER
n and 2
p =
d A1A
OR
p
p
n d M1A
the vector product is non-zero for p ∈ R
THEN
L is not perpendicular to Π AG
[3 marks]
(b) METHOD 1
p = − 5 and q = 4 A1A
METHOD 2
direction vector of line is perpendicular to plane, so
^ p ⋅ =
M
p = − 5 A
(2, q , 1)is common to both L and Π
either
q
or by substituting into x + y + 3 z = 9 M
q = 4 A
[4 marks]
continued…
Question 10 continued
(c) (i) METHOD 1
α is the acute angle between^ n and^ L
if
sin 11
θ = then
cos 11
α = (M1)(A1)
n d
n d
n d
n d
M
2
p
p
A1A
2 2 ( p + 5) = p + 5 M
10 p = − 20 (or equivalent) A
p = − 2 AG
METHOD 2
α is the angle between n and L
if
θ = (^) then
sin 11
attempting to use sin α
n d
n d
M
2 2 2
2
p p
p
A1A
2 2 p − p + 3 = p + 5 M
− p + 3 = 5 (or equivalent) A
p = − 2 AG
(ii)
x y q p z
and (A1)
x = 6 and y = q − 4 (A1)
this satisfies Π so 6 + q − 4 − 3 = 9 M
q = 10 A
[11 marks]
Total [18 marks]
Question 11 continued
(ii)
π sin 2 0 0, , π 2
h = h = A
Note : Award A1 for
π sin 2 0 0, , π 2
h = h = from an incorrect
2
2
d
d
h
t
.
(iii) METHOD 1
d
d
h
t
is a minimum at h = 0, πand the container is widest at these values
R
d
d
h
t
is a maximum at
π
h = and the container is narrowest at this value
R [7 marks]
Total [19 marks]
12. (a) EITHER
7 7 2 π^2 π cos i sin 7 7
w
(M1)
= cos 2π + i sin 2π A
so w is a root AG
OR
7 z = 1 = cos(2π k ) + i sin(2π k ) (M1)
2 π 2 π cos sin 7 7
k k z i
A
2 π 2 π 1 cos sin 7 7
k z i
A
so w is a root AG
[3 marks]
(b) (i) (^) ( )
2 3 4 5 6 ( w − 1) 1+ w + w + w + w + w + w
2 3 4 5 6 7 2 3 4 5 6 = w + w + w + w + w + w + w − 1 − w − w − w − w − w − w M
7 = w − 1 ( = 0) A
(ii)
7 w − 1 = 0 and w − 1 ≠ 0 R
so
2 3 4 5 6 1 + w + w + w + w + w + w = 0 AG
[3 marks]
continued…
Question 12 continued
(c) the roots are
2 3 4 5 6 1, w , w , w , w , w and w A
7 points equidistant from the origin A
approximately correct angular positions for
2 3 4 5 6 1, w , w , w , w , w and w A
Note: Condone use of cis notation for the final two A marks.
Note: For the final A mark there should be one root in the first quadrant, two in the
second, two in the third, one in the fourth, and one on the real axis.
[3 marks]
(d) (i) (^) ( )
∗ = + +
( ) ( )
2 4 w w w
∗ ∗ ∗ = + + A
since
6 w w
∗ = , (^) ( )
2 5 w w
∗ = and (^) ( )
4 3 w w
∗ = R
continued…