

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Fases de aprendizaje Niveles de conocimiento
Tipo: Apuntes
1 / 3
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Fases de Aprendizaje Van Hiele Jaime (1993, p.9) señala que estas fases no le corresponden estar vinculadas a un solo nivel, sino que tienen una continuación posterior de la primera fase. Para que el estudiante pueda dominar cada fase y avanzar, tiene que adecuar una cantidad de actividades que se requiera. A continuación, escribiremos las cinco fases: Fase 1: Información Se trata de determinar, o acercarse lo más posible, a la situación real de los alumnos/as. El profesor debe informar a los estudiantes sobre el campo de estudio en el que van a trabajar, qué tipo de problemas se van a plantear, qué materiales van a utilizar, etcétera. Así mismo, los alumnos aprenderán a manejar el material y adquirirán una serie de conocimientos básicos imprescindibles para poder empezar el trabajo matemático propiamente dicho. Mediante las preguntas adecuadas se trata de determinar el punto de partida de los alumnos/as y el camino a seguir de las actividades siguientes. Se puede realizar mediante un test o preguntas individualizadas utilizando actividades del nivel de partida. FASE 2. Orientación dirigida En esta fase los estudiantes empiezan a explorar el campo de estudio por medio de investigaciones basadas en el material que les ha sido proporcionado. El objetivo principal de esta fase es conseguir que los estudiantes descubran, comprendan y aprendan cuáles son los conceptos, propiedades, figuras, etcétera, principales en el área de la geometría que están estudiando. Obviamente los estudiantes, por sí solos, no podrían realizar un aprendizaje eficaz, por lo que es necesario que las actividades propuestas estén convenientemente dirigidas hacia los conceptos, propiedades, entre otros, que deben estudiar. El trabajo que vayan a hacer estará organizado para que los conceptos y estructuras característicos se les presenten de manera progresiva. FASE 3. Explicitación En esta fase intentaremos que los estudiantes intercambien sus experiencias, comenten las regularidades que han observado, y expliquen cómo han resuelto las actividades en un contexto de diálogo en grupo. Además, tendrá como objetivo conseguir que los estudiantes terminen de aprender el nuevo vocabulario, correspondiente al nuevo nivel de razonamiento que están empezando a alcanzar. La interacción entre alumnos/as es importante ya que les obliga a ordenar sus ideas, analizarlas y expresarlas de modo comprensible para los demás. FASE 4. Orientación libre Aparecen actividades más complejas fundamentalmente referidas a aplicar lo anteriormente adquirido, tanto respecto a contenidos como al lenguaje necesario. Estas actividades deberán ser lo suficientemente abiertas, lo ideal son problemas abiertos, para que puedan ser abordables de diferentes maneras o puedan ser de varias respuestas válidas conforme a la interpretación del enunciado. Esto permitirá completar la red de relaciones que se empezó a formar en las fases anteriores, dando lugar a que se establezcan las relaciones más complejas e importantes. FASE 5. Integración La primera idea importante es que, en esta fase, no se trabajan contenidos nuevos, sino que sólo se sintetizan los ya trabajados. Se trata de crear una red interna de conocimientos aprendidos o mejorados que sustituya a la que ya poseía. Como idea final podemos señalar como en esta estructura de actividades se pueden integrar perfectamente actividades de recuperación para los alumnos/as que presenten algún retraso en la adquisición de los conocimientos geométricos y, por otra parte, rehaciendo adecuadamente los grupos profundizar algo más con aquellos alumnos/as de mejor rendimiento, Aunque no se ha explicitado las actividades de evaluación, también se integrarían fácilmente en esta estructura de actividades.
Niveles de razonamiento de la pirámide por Van Hiele Esta teoría es propuesta por el matrimonio Van Hiele (Pierre y Dina) en Holanda. Establecen su teoría del desarrollo de la geometría, con la experiencia que adquirieron en las aulas. Según Vargas y Gamboa en la Jerarquía del Razonamiento Geométrico de Van Hiele, el modelo de Van Hiele coopera con la enseñanza del desarrollo del razonamiento geométrico de un estudiante a mediante de una sucesión de niveles de aprendizaje de la geometría. (p.81) Si queremos que el escolar domine cada nivel y progrese, deberá adaptarse a una serie de acciones necesarias. Nivel 1 reconocimiento o visualización Se caracteriza porque el estudiante distingue la figura geométrica de forma íntegra, sin distinguir los fragmentos o elementos de la figura. Un individuo está limitado solo por su conocimiento o al describir formas geométricas, solo puede definir lo que observa y enlazar con su entorno. Los estudiantes reconocen la figura de la pirámide, pero se limitan a ella en cuanto a los atributos, sin saber en qué consisten. El estudiante reconoce el dibujo de una pirámide, pero solo se limita a ello, con respecto a las propiedades ni tiene idea que las conforman. Nivel 2 Análisis Este nivel, el estudiante ya puede identificar y examinar elementos y propiedades específicas de figuras geométricas e identificarlos mediante de ellos, pero tiene dificultad en relacionarlos o clasificarlos entre los atributos de diferentes familias de figuras. El estudiante identifica un prisma como una pirámide tiene en común la forma posicional, la apotema, la altura, etc. Puede ignorar que algunas propiedades se relacionan en sí con otras. Deduce las propiedades a través de la experimentación. Nivel 3 Clasificación Para superar el nivel anterior, los estudiantes identifican gráficas por sus propiedades y distingue cómo unas propiedades proceden de otras, creando interdependencia dentro de las gráficas y entre sus familias. El escolar en este nivel clasifica las pirámides partiendo de sus propiedades y distinguir de otras pirámides si es regular o no regulares todas las pirámides. Se comprende que realiza una demostración formal, más no una compleja, en lo posterior ya que se le explica escalonadamente. Nivel 4 Deducción formal Realiza conclusiones y argumentos lógicos y formales, consciente de que tienen que justificar las afirmaciones realizadas. Entiende y emplea las correlaciones entre propiedades y las concretiza como sistemas, dado que ha entendido la naturaleza axiomática de las matemáticas. El escolar tiene la capacidad para desarrollar axiomas, postulados, definiciones, teoremas y demostraciones sin recurrir a las fórmulas. Tiene la capacidad de realizar razonamiento lógico formales, no hay necesidad de memorizar demostraciones, pues ahora puede demostrar de diferentes formas, también señalar la comprensión de diferentes definiciones que podamos tener de la pirámide para poder analizarla y relacionarla. Nivel 5 Rigor