
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Es un mapa conceptual. donde se hablan de algunos puntos referentes a las nociones elementales de la continuidad de funciones
Tipo: Apuntes
1 / 1
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Noción Intuitiva de Continuidad : Una idea intuitiva de función continua se tiene al considerar que su gráfica es continua, en el sentido que se puede dibujar sin levantar el lápiz de la hoja de papel.
Utilidad de las Funciones Continuas: En la naturaleza y en nuestra vida diaria aparecen numerosos fenómenos que tienen un comportamiento continuo. Por ejemplo, el crecimiento de una planta es continuo, el desplazamiento de un vehículo o el volumen del agua que fluye de un recipiente
Una Formalización del concepto de continuidad La definición matemática de continuidad responde al significado de la palabra continuidad en el lenguaje cotidiano. Se puede pensar que un proceso continuo tiene lugar gradualmente, sin interrupciones ni cambios abruptos
Continuidad en intervalos Una función ƒ es continua en un intervalo abierto (a,b) si y solo si es continua en cada punto en (a,b).
Algebra de funciones continúas:
Composición de funciones continúas
Teorema de Bolzano Si una función f(x) está definida y es continua en un intervalo cerrado [a, b] y toma valores de distinto signo en los extremos a y b, entonces existe al menos un punto c del intervalo abierto (a, b) en el que se anula la función.
Teorema del valor intermedio En análisis matemático el teorema del valor intermedio, es un teorema sobre funciones continuas reales definidas sobre un intervalo. Intuitivamente, el resultado afirma que, si una función es continua en un intervalo, entonces toma todos los valores intermedios comprendidos entre los extremos del intervalo.