








Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Alguna información acerca de los principios de estática, así como algunas formulas
Tipo: Diapositivas
1 / 14
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
En oferta
Wendy Romero Arenas Alan Muñoz Díaz Cuauhtémoc Texis Flores Héctor Manuel Pozos Carillo Guadalupe Teloxa Robles
La Estática es la parte de la Física que estudia los cuerpos sobre los que actúan fuerzas y momentos cuyas resultantes son nulas, de forma que permanecen en reposo o en movimiento no acelerado.
A diferencia de los objetos concretos, la fuerza, (así como ciertos entes de la Física y la Matemática), es un concepto de difícil definición. Un objeto concreto no presenta problemas para su descripción, ya que se lo ve, se lo toca, sin embargo, la fuerza sólo puede evidenciarse a través de lo que ella es capaz de hacer o de lo que se puede hacer con ella, o sea a través de sus efectos. La fuerza es todo aquello que es capaz de modificar la velocidad de un cuerpo (en módulo, dirección o sentido) y/o deformarlo o sea cambiarle la forma (aplastarlo, abollarlo, estirarlo, romperlo). La fuerza es una magnitud vectorial ya que, requiere de los cuatro elementos de un vector para ser expresada completamente.
MEDICION DE FUERZAS Existen muchas maneras de medir fuerzas. Algunos métodos son: estáticos dinámicos. Procedimiento estático basado en el estiramiento de un resorte: Ciertos dispositivos llamados dinamómetros, emplean la propiedad que tienen los resortes de alargarse o acortarse (deformarse) de modo directamente proporcional a la fuerza aplicada. La ley de deformación de un resorte se conoce como "Ley de Hooke" y su expresión vectorial es: Fe = − k. Δx: Donde k representa la "constante elástica del resorte" y Δx (se lee "delta equis") es la deformación del resorte y el - (signo menos) indica que el sentido de la fuerza Fe (fuerza recuperadora elástica) es contrario al sentido de la deformación del resorte. Unidad: El kilogramo fuerza. En la industria, el comercio y la actividad técnica en general, se emplea como unidad de fuerza, el kilogramo fuerza. Se suele simbolizar entre otras maneras con el símbolo "kgf". Su valor unitario (1 kgf) equivale al peso de un cuerpo llamado "kilogramo patrón". El Newton: Es la unidad de fuerza del Sistema Internacional de Unidades (S.I.), para su uso en las especificaciones técnicas de máquinas, equipos y automotores. Su empleo es cada vez mayor en la industria y el comercio, aunque por costumbre se siga empleando aún el kilogramo fuerza.
VECTOR Un Vector es un segmento de línea que con dirección y sentido, representa una magnitud física, forma parte fundamental de la Geometría, su representación grafica consiste en una flecha, cuya punta va dirigida en dirección a la magnitud del estudio. En estudios matemáticos avanzados, el vector tiene gran importancia, ya que se utiliza para el estudio de funciones y la resolución de problemas en las que se busca la representación numérica y grafica de una función.
Vectores unitarios: Son todos aquellos vectores cuya longitud es la unidad, o dicho de otra forma, su módulo es igual a 1.
Vectores fijos: Se dice que un vector es fijo cuando el origen del vector está aplicado a un punto fijo, de modo que basta con que cambie la posición del punto de aplicación para que cambie el vector en cuestión. Por ejemplo la velocidad de una partícula o la fuerza aplicada en un punto.
Vectores axiales: Están ligados a efectos de giros y normalmente se definen mediante el producto vectorial. Su módulo representa el valor numérico de la magnitud, la dirección señala el eje de rotación y el sentido del vector se hace corresponder con el sentido de giro a través del convenio de la mano derecha. Su estudio se abordará con cierto detalle en niveles más avanzados. Por ejemplo, la velocidad angular de un cuerpo es, en realidad, un vector axial, aunque para la mayoría de los problemas de este nivel bastará considerarla una magnitud escalar.
Vectores polares: Son aquellos vectores a los que se les puede asignar una dirección y un sentido de manera clara. No están ligados a ningún efecto de rotación o de giro. Por ejemplo la fuerza o la velocidad.
Por otro lado, desde el punto de vista geométrico, se tiene que cumplir que las fuerzas que actúan sobre un cuerpo en equilibrio tienen un gráfico con forma de polígono cerrado; ya que en el gráfico de las fuerzas, el origen de cada fuerza se representa a partir del extremo de la fuerza anterior, tal y como podemos observar en la siguiente imagen. El hecho de que su gráfico corresponda a un polígono cerrado verifica que la fuerza resultante sea nula, ya que el origen de la primera fuerza (F1) coincide con el extremo de la última (F4).
-Segunda condición de equilibrio: Por otro lado, diremos que un cuerpo está en equilibrio de rotación cuando la suma de todas las fuerzas que se ejercen en él respecto a cualquier punto es nula. O dicho de otro modo, cuando la suma de los momentos de torsión es cero. En este caso, desde el punto de vista matemático, y en el caso anterior en el que las fuerzas son coplanarias; se tiene que cumplir que la suma de los momentos o fuerzas asociados a las rotaciones antihorarias (en el sentido contrario de las agujas del reloj), tiene que ser igual a la suma aritmética de los momentos o fuerzas que están asociados a las rotaciones horarias (en el sentido de las agujas del reloj) Un cuerpo se encuentra en equilibrio traslacional y rotacional cuando se verifiquen de forma simultánea las dos condiciones de equilibrio. Estas condiciones de equilibrio se convierten, gracias al álgebra vectorial, en un sistema de ecuaciones cuya solución será la solución de la condición del equilibrio.