Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Distribución de Variables Aleatorias Continuas, Diapositivas de Probabilidad

Este documento introduce las variables aleatorias continuas, su espacio de muestra infinito, la función de densidad de probabilidad f(x) y la función de distribución acumulada F(x). Se tratan distintos tipos de distribuciones continuas como uniforme, normal y exponencial. Se explican conceptos relacionados como la media, la varianza, el desvío estándar y el teorema de Chebyshev. Se incluyen definiciones y ecuaciones para el cálculo de percentiles, valor esperado y varianza de funciones de una variable aleatoria continua.

Tipo: Diapositivas

2020/2021

Subido el 12/03/2021

michelle-maya-olguin
michelle-maya-olguin 🇲🇽

5 documentos

1 / 26

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Continuous Random
Variables
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a

Vista previa parcial del texto

¡Descarga Distribución de Variables Aleatorias Continuas y más Diapositivas en PDF de Probabilidad solo en Docsity!

Continuous Random

Variables

Random Variable

If a sample space contains an

infinite number of possibilities

equal to the number of points on a

line segment, it is called a

continuous sample space

Probability distribution

The function f(x) is a probability

density function, for the

continuous random variable X,

defined over the set of real

numbers R, if

 

 

   

x R

P a X b f x dx

f x dx

f x

b

a

 

for all

Cumulative distribution

The cumulative distribution F(x) of

a continuous random variable X

with density function f(x) is

               

F x P X x f t dt x

x

for

Percentile

In a random variable X, the value

of x up until which the specified

probability () is accumulated.

F(x) = and solve for x.

Percentile

Percentile 0.5 = Median = 2nd

Quartile.

Percentile 0.25 = 1st Quartile.

Percentile 0.75 = 3rd Quartile.

Interquartile Range = 3rd Quartile – 1st

Quartile.

Critical Value  = Percentile (1 – )

Expected Value

Let X be a random variable with

probability distribution f(x). The

mean or expected value of the

random variable g(X) is

      

 

E g xg x f x dx g x

Variance

Let X be a random variable with

probability distribution f(x) and

mean . The variance of X is

       

 

2 2

2 2 2

  

 

E X

E X x f x dx

Chebyshev´s Theorem

The probability that any random

variable X will assume a value

within k standard deviations of the

mean is at least 1-1/k

2

. That is,

  2

1

1

k

P   k   X    k   

Continuous Uniform

Distribution

The density function of the

continuous uniform random

variable X on the interval [A, B] is:

 

 

 

elsewhere

A X B

B A

f x A B

0

1

; ,

Normal Distribution

The density function of the normal

random variable X, with mean 

and variance 

2 , is

 

 

     

 

n x e x

x

,

2

1

; ,

2

2

2 

 

 

Normal Distribution

-6 -4 -2 0 2 4 6

Normal Distribution

Exponential Distribution

The continuous random variable X

has an exponential distribution,

with parameter , if its density

function is given by

 

elsewhere

e x f x

x

0

0

(^1) 

Exponential Distribution

The mean and the variance of the

Exponential Distribution are

The cdf of an exponential

distribution is:

2 2

      x x

and

 

e x

x

F x

x