Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Teoría de Variables Aleatorias Discretas, Diapositivas de Probabilidad

Este documento introduce las variables aleatorias discretas, su espacio de muestra discreto o continuo, su función de probabilidad masa o distribución, la función acumulada, la esperanza matematica o valor esperado y la desviación estándar. Se incluyen distribuciones específicas como la distribución uniforme discreta, el proceso Bernoulli, la distribución binomial, la distribución multinomial, la distribución hipergeométrica, la distribución negativa binomial, la distribución geométrica y la distribución poisson.

Tipo: Diapositivas

2020/2021

Subido el 12/03/2021

michelle-maya-olguin
michelle-maya-olguin 🇲🇽

5 documentos

1 / 28

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Discrete Random Variables
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c

Vista previa parcial del texto

¡Descarga Teoría de Variables Aleatorias Discretas y más Diapositivas en PDF de Probabilidad solo en Docsity!

Discrete Random Variables

Random Variable

A random variable is a function

that associates a real number with

each element in the sample space

Random Variable

A random variable is called a discrete random variable if its set of possible outcomes is countable. When a random variable can take on values on a continuous scale it is called continuous random variable

Probability distribution

The set of ordered pairs (x, f(x))

is a probability function,

probability mass function, or

probability distribution of the

discrete random variable X if for

each possible outcome x,

    PX xfxf x f x x      1 0

Cumulative distribution

 (^) For any numbers a and b, where b > a 

P (a ≤ X ≤ b) = F (b) – F (a-1)

 P (X = a) = F (a) – F (a -1) 

P(X  a) = 1 – F(a-1)

Expected Value

Let X be a random variable with

probability distribution f(x). The

mean or expected value of X is

       x

 E x xf x

Variance

Let X be a random variable with

probability distribution f(x) and

mean . The variance of X is

2 2 2 2 2

     

E X E X x f x x

Standard Deviation

The positive square root of the variance, , is called the standard deviation of X

Discrete Uniform

Distribution

The mean and the variance of the

discrete uniform distribution f(x;k)

are

  k x and k x k i i k i i 2 1 2 1          

Bernoulli Trial

  1. The outcome in the trial results as a success or a failure
  2. The probability of success is denoted p
  3. q = 1-p is the probability of failure

Binomial Distribution

The probability distribution of the

binomial random variable X, the

number of success in n trials, is

given by

  (^) p q x n x n b x n p x n x ; , ,  0 , 1 ,...,          

Binomial Distribution

The mean and the variance of the

binomial distribution b(x;n,p) are

np andnpq

 

Hypergeometric

Distribution

The probability distribution of the Hypergeometric random variable X, the number of success in a random sample of size n selected from N items of which k are labelled success and N-k labelled failure is   x n n

N

n x N k x k h x ; N , n , k ,  0 , 1 ,..., 

Hypergeometric

Distribution

The mean and the variance of the

Hypergeometric distribution

h(x;N,n,k) are

           N k N k n N N n and N nk 1 1 2  