Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Solucion del Libro Maquinas Electricas Fitzgerald, Guías, Proyectos, Investigaciones de Máquinas Eléctricas

tiene la solucion de todos los ejercicios del libro

Tipo: Guías, Proyectos, Investigaciones

2017/2018
En oferta
30 Puntos
Discount

Oferta a tiempo limitado


Subido el 20/10/2018

jaime-andres-salas
jaime-andres-salas 🇪🇨

1 documento

1 / 153

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
http://www.elsolucionario.blogspot.com
LIBROS UNIVERISTARIOS
Y SOLUCIONARIOS DE
MUCHOS DE ESTOS LIBROS
LOS SOLUCIONARIOS
CONTIENEN TODOS LOS
EJERCICIOS DEL LIBRO
RESUELTOS Y EXPLICADOS
DE FORMA CLARA
VISITANOS PARA
DESARGALOS GRATIS.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

En oferta

Vista previa parcial del texto

¡Descarga Solucion del Libro Maquinas Electricas Fitzgerald y más Guías, Proyectos, Investigaciones en PDF de Máquinas Eléctricas solo en Docsity!

http://www.elsolucionario.blogspot.com

PROBLEM SOLUTIONS: Chapter 1

Problem 1. Part (a): Rc =

lc μAc

lc μrμ 0 Ac

= 0 A/Wb

Rg =

g μ 0 Ac = 1. 017 × 106 A/Wb

part (b):

N I

Rc + Rg

= 1. 224 × 10 −^4 Wb

part (c):

λ = N Φ = 1. 016 × 10 −^2 Wb

part (d):

L =

λ I

= 6. 775 mH

Problem 1. part (a): Rc =

lc μAc

lc μrμ 0 Ac

= 1. 591 × 105 A/Wb

Rg =

g μ 0 Ac

= 1. 017 × 106 A/Wb

part (b):

N I

Rc + Rg

= 1. 059 × 10 −^4 Wb

part (c):

λ = N Φ = 8. 787 × 10 −^3 Wb

part (d):

L =

λ I = 5. 858 mH

part (c):

Problem 1. part (a):

Hg =

N I

2 g ; Bc =

Ag Ac

Bg = Bg

x X 0

part (b): Equations

2 gHg + Hclc = N I; Bg Ag = BcAc

and

Bg = μ 0 Hg; Bc = μHc

can be combined to give

Bg =

 N I

2 g +

μ 0 μ

Ag Ac

(lc + lp)

 N I

2 g +

μ 0 μ

1 − (^) Xx 0

(lc + lp)

Problem 1. part (a):

I = B

g +

μ 0 μ

(lc + lp) μ 0 N

 = 2. 15 A

part (b):

μ = μ 0

1 + 0. 05 B^8

= 1012 μ 0

I = B

g +

μ 0 μ

(lc + lp) μ 0 N

 = 3. 02 A

part (c):

Problem 1.

g =

μ 0 N 2 Ac L

μ 0 μ

lc = 0. 353 mm

Problem 1. part (a):

lc = 2π(Ro − Ri) − g = 3. 57 cm; Ac = (Ro − Ri)h = 1. 2 cm^2

part (b):

Rg = g μ 0 Ac

= 1. 33 × 107 A/Wb; Rc = 0 A/Wb;

part (c):

L =

N 2

Rg + Rg

= 0. 319 mH

part (d):

I =

Bg(Rc + Rg )Ac N

= 3 3. 1 A

part (e):

λ = N BgAc = 10. 5 mWb

Problem 1. part (a): Same as Problem 1. part (b):

Rg =

g μ 0 Ac

= 1. 33 × 107 A/Wb; Rc =

lc μAc

= 3. 16 × 105 A/Wb

Problem 1. part (a):

R 3 =

R^21 + R^22 = 4. 27 cm

part (b):

L =

μ 0 AgN 2 g +

μ 0 μ

lc

= 251 mH

part (c): For ω = 2π60 rad/sec and λpeak = N Ag Bpeak = 0.452 Wb:

(i) Vrms = ωλpeak = 171 V rms

(ii) Irms =

Vrms ωL

= 1. 81 A rms

(iii) Wpeak = 0. 5 L(

2 Irms)^2 = 0. 817 J

part (d): For ω = 2π50 rad/sec and λpeak = N AgBpeak = 0.452 Wb:

(i) Vrms = ωλpeak = 142 V rms

(ii) Irms = Vrms ωL

= 1. 81 A rms

(iii) Wpeak = 0. 5 L(

2 Irms)^2 = 0. 817 J

Problem 1. part (a):

part (b):

Emax = 4f N AcBpeak = 3 45 V

Problem 1. part (a):

N =

LI

AcBsat

= 99 turns; g =

μ 0 N I Bsat

μ 0 lc μ

= 0. 3 6 mm

part (b): From Eq.3.

Wgap =

AcgB^2 sat 2 μ 0

= 0. 207 J; Wcore =

AclcB^2 sat 2 μ

= 0. 045 J

Thus Wtot = Wgap + Wcore = 0.252 J. From Eq. 1.47, (1/2)LI^2 = 0.252 J. Q.E.D.

Problem 1. part (a): Minimum inductance = 4 mH, for which g = 0.0627 mm, N = 20 turns and Vrms = 6.78 V part (b): Maximum inductance = 144 mH, for which g = 4.99 mm, N = 1078 turns and Vrms = 224 V

Problem 1. part (a):

L =

μ 0 πa^2 N 2 2 πr

= 56. 0 mH

part (b): Core volume Vcore ≈ (2πr)πa^2 = 40.0 m^3. Thus

W = Vcore

B^2

2 μ 0

= 4. 87 J

part (c): For T = 30 sec,

di dt

(2πrB)/(μ 0 N ) T

= 2. 92 × 103 A/sec

v = L di dt

= 163V

Problem 1. part (a):

Acu = fwab; Volcu = 2ab(w + h + 2a)

part (b):

part (b):

(i) B 1 = 0; B 2 =

μ 0 N 2 I 2 g 2

(ii) λ 1 = N 1 A 2 B 2 = μ 0 N 1 N 2

A 2

g 2

I 2

(iii) λ 2 = N 2 A 2 B 2 = μ 0 N 22

A 2

g 2

I 2

part (c):

(i) B 1 =

μ 0 N 1 I 1 g 1

; B 2 =

μ 0 N 1 I 1 g 2

μ 0 N 2 I 2 g 2

(ii) λ 1 = N 1 (A 1 B 1 + A 2 B 2 ) = μ 0 N 12

A 1

g 1

A 2

g 2

I 1 + μ 0 N 1 N 2

A 2

g 2

I 2

(iii) λ 2 = N 2 A 2 B 2 = μ 0 N 1 N 2

A 2

g 2

I 1 + μ 0 N 22

A 2

g 2

I 2

part (d):

L 11 = N 12

A 1

g 1

A 2

g 2

; L 22 = μ 0 N 22

A 2

g 2

; L 12 = μ 0 N 1 N 2

A 2

g 2

Problem 1.

RA =

lA μAc

; R 1 =

l 1 μAc

; R 2 =

l 2 μAc

; Rg =

g μ 0 Ac

part (a):

L 11 =

N 12

R 1 + R 2 + Rg + RA/ 2

N 12 μAc l 1 + l 2 + lA/2 + g (μ/μ 0 )

LAA = LBB =

N 2

RA + RA||(R 1 + R 2 + Rg )

N 2 μAc lA

[

lA + l 1 + l 2 + g (μ/μ 0 ) lA + 2(l 1 + l 2 + g (μ/μ 0 ))

]

part (b):

LAB = LBA =

N 2 (R 1 + R 2 + Rg ) RA(RA + 2(R 1 + R 2 + Rg ))

N 2 μAc lA

[

l 1 + l 2 + g (μ/μ 0 ) lA + 2(l 1 + l 2 + g (μ/μ 0 ))

]

LA1 = L1A = −LB1 = −L1B =

−N N 1

RA + 2(R 1 + R 2 + Rg )

−N N 1 μAc lA + 2(l 1 + l 2 + g (μ/μ 0 ))

part (c):

v 1 = d dt

[LA1iA + LB1iB] = LA d dt

[iA − iB]

Q.E.D.

Problem 1. part (a):

L 12 =

μ 0 N 1 N 2 2 g

[D(w − x)]

part (b):

v 2 = dλ 2 dt

= I 0

dL 12 dt

N 1 N 2 μ 0 D 2 g

dx dt

= −

N 1 N 2 μ 0 D 2 g

% ωw 2

cos ωt

Problem 1. part (a):

H =

N 1 i 1 2 π(Ro + Ri)/ 2

N 1 i 1 π(Ro + Ri)

part (b):

v 2 =

d dt [N 2 (tn∆)B] = N 2 tn∆

dB dt

part (c):

vo = G

v 2 dt = GN 2 tn∆B

part (b): Area = 191 Joules part (c): Core loss = 1.50 W/kg.

Problem 1. Brms = 1.1 T and f = 60 Hz,

Vrms = ωN AcBrms = 46. 7 V

Core volume = Aclc = 1. 05 × 10 −^3 m^3. Mass density = 7. 65 × 103 kg/m^3. Thus, the core mass = (1. 05 × 10 −^3 )(7. 65 × 103 ) = 8.03kg. At B = 1.1 T rms = 1.56 T peak, core loss density = 1.3W/kg and rms VA density is 2.0 VA/kg. Thus, the core loss = 1. 3 × 8 .03= 10 .4 W. The total exciting VA for the core is 2. 0 × 8 .03= 16 .0 VA. Thus, its reactive component is given by

16. 02 − 10. 42 = 12.2 VAR.

The rms energy storage in the air gap is

Wgap =

gAcB^2 rms μ 0 = 3. 61 Joules

corresponding to an rms reactive power of

VARgap = ωWgap = 1361 Joules

Thus, the total rms exciting VA for the magnetic circuit is

VArms = sqrt 10. 42 + (1361 + 12.2)^2 = 1373 VA

and the rms current is Irms = VArms/Vrms = 29.4 A.

Problem 1. part(a): Area increases by a factor of 4. Thus the voltage increases by a factor of 4 to e = 1096cos 377 t. part (b): lc doubles therefore so does the current. Thus I = 0.26 A. part (c): Volume increases by a factor of 8 and voltage increases by a factor of 4. There Iφ,rms doubles to 0.20 A. part (d): Volume increases by a factor of 8 as does the core loss. Thus Pc = 128 W.

Problem 1. From Fig. 1.19, the maximum energy product for samarium-cobalt occurs at (approximately) B = 0.47 T and H = -360 kA/m. Thus the maximum energy product is 1. 69 × 105 J/m^3. Thus,

Am =

2 cm^2 = 3.40 cm^2

and

lm = − 0 .2 cm

μ 0 (− 3. 60 × 105 )

= 0.3 5 cm

Thus the volume is 3. 40 × 0 .3 5 = 1.20 cm^3 , which is a reduction by a factor of 5.09/1.21 = 4.9.

Problem 1. From Fig. 1.19, the maximum energy product for neodymium-iron-boron occurs at (approximately) B = 0.63 T and H = -470 kA/m. Thus the maximum energy product is 2. 90 × 105 J/m^3. Thus,

Am =

2 cm^2 = 2.54 cm^2

and

lm =^ −^0 .2 cm

μ 0 (− 4. 70 × 105 )

= 0.27 cm

Thus the volume is 2. 54 × 0 .25 = 0.688 cm^3 , which is a reduction by a factor of 5.09/0.688 = 7.4.

Problem 1. From Fig. 1.19, the maximum energy product for samarium-cobalt occurs at (approximately) B = 0.47 T and H = -360 kA/m. Thus the maximum energy product is 1. 69 × 105 J/m^3. Thus, we want Bg = 1.2 T, Bm = 0.47 T and Hm = −360 kA/m.

hm = −g

Hg Hm

= −g

Bg μ 0 Hm

= 2. 65 mm

Am = Ag

Bg Bm

= 2πRh

Bg Bm

= 26. 0 cm^2

Rm =

Am π

= 2. 87 cm

Problem 1. From Fig. 1.19, the maximum energy product for neodymium-iron-boron oc- curs at (approximately) Bm = 0.63 T and Hm = -470 kA/m. The magnetization curve for neodymium-iron-boron can be represented as

Bm = μRHm + Br

where Br = 1.26 T and μR = 1. 067 μ 0. The magnetic circuit must satisfy

PROBLEM SOLUTIONS: Chapter 2

Problem 2. At 60 Hz, ω = 120π.

primary: (Vrms)max = N 1 ωAc(Brms)max = 2755 V, rms

secondary: (Vrms)max = N 2 ωAc(Brms)max = 172 V, rms

At 50 Hz, ω = 100π. Primary voltage is 2295 V, rms and secondary voltage is 143 V, rms.

Problem 2.

N =

2 Vrms ωAcBpeak

= 167 turns

Problem 2.

N =

= 3 turns

Problem 2. Resistance seen at primary is R 1 = (N 1 /N 2 )^2 R 2 = 6.25Ω. Thus

I 1 =

V 1

R 1

= 1. 6 A

and

V 2 =

N 2

N 1

V 1 = 40 V

Problem 2. The maximum power will be supplied to the load resistor when its im- pedance, as reflected to the primary of the idealtransformer, equals that of the source (2 kΩ). Thus the transformer turns ratio N to give maximum power must be

N =

Rs Rload

Under these conditions, the source voltage will see a total resistance of Rtot = 4 kΩ and the current will thus equal I = Vs/Rtot = 2 mA. Thus, the power delivered to the load will equal

Pload = I^2 (N 2 Rload) = 8 mW

Here is the desired MATLAB plot:

Problem 2. The maximum power will be supplied to the load resistor when its im- pedance, as reflected to the primary of the idealtransformer, equals that of the source (2 kΩ). Thus the transformer turns ratio N to give maximum power must be

N =

Rs Rload

Under these conditions, the source voltage will see a total impedance of Ztot = 2 + j2 kΩ whose magnitude is 2

2 kΩ. The current will thus equal I = Vs/|Ztot| = 2

2 mA. Thus, the power delivered to the load will equal

Pload = I^2 (N 2 Rload) = 16 mW

Here is the desired MATLAB plot:

Problem 2. part (a):

part (b):

Iˆload = 30 kW 230 V

ejφ^ = 93. 8 ejφ^ A

where φ is the power-factor angle. Referred to the high voltage side, IˆH =

  1. 38 ejφA.

VˆH = ZH IˆH

Thus, (i) for a power factor of 0.85 lagging, VH = 2413 V and (ii) for a power factor of 0.85 leading, VH = 2199 V. part (c):

Problem 2. part (a):

part (b): Following methodology of Problem 2.11, (i) for a power factor of 0.85 lagging, VH = 4956 V and (ii) for a power factor of 0.85 leading, VH = 4000 V. part (c):

Problem 2. part (a): Iload = 160 kW/2340 V = 68.4 A at  = cos−^1 (0.89) = 27. 1 ◦

V^ ˆt,H = N ( VˆL + ZtIL)

which gives VH = 33.7 kV. part (b):

Vˆsend = N ( VˆL + (Zt + Zf )IL)