




























































































Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Solucionario de precalculo 9 edición Sullivan
Tipo: Ejercicios
1 / 148
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
1. (^) ( ) ( ) ( ) ( )
f = − + = − + = − + = −
2. (^) ( ) ( ) ( )
2 2 2
f x x x x
2 2
x f x x
( ) ( )
x x x
x ≠ − 5, x ≠ 5 Domain: (^) { x x ≠ −5, x ≠ (^5) }
4. composite function; f ( g x ( )) 5. False: f ( g x ( ) ) = ( f g )( ) x 6. False. The domain of ( f g ) ( ) x is a subset of the domain of g x ( ). 7. a. ( f g )( ) 1 = f (^) ( g ( ) (^1) ) = f ( 0 ) = − 1
b. ( f g ) ( − 1 ) = f (^) ( g ( − 1 ) (^) ) = f ( 0 ) = − 1
c. ( g f ) ( − 1 ) = g (^) ( f ( − 1 ) (^) ) = g ( − 3 ) = 8
d. ( g f )( 0 ) = g (^) ( f ( 0 )) = g ( − 1 ) = 0
e. ( g g )( − 2 ) = g (^) ( g ( − 2 )) = g ( ) 3 = 8
f. ( f f )( − 1 ) = f (^) ( f ( − 1 ) (^) ) = f ( − 3 ) = − 7
8. a. ( f g ) ( ) 1 = f (^) ( g ( ) (^1) ) = f ( 0 ) = 5
b. ( f g )( 2 ) = f (^) ( g ( 2 ) (^) ) = f ( − 3 ) = 11
c. ( g f )( 2 ) = g (^) ( f ( 2 ) (^) ) = g ( ) 1 = 0
d. ( g f )( ) 3 = g (^) ( f ( ) (^3) ) = g ( − 1 ) = 0
e. (^) ( g g (^) )( ) 1 = g (^) ( g (^) ( ) (^1) ) = g ( 0 )= 1
f. (^) ( f f (^) )( ) 3 = f (^) ( f (^) ( ) (^3) ) = f ( − (^1) ) = 7
9. a. (^) ( g f (^) ) ( − (^1) ) = g (^) ( f ( 1)− (^) ) = g ( ) 1 = 4
b. (^) ( g f (^) )( 0 ) = g (^) ( f (0) (^) ) = g ( 0 ) = 5
c. (^) ( f g (^) )( − (^1) ) = f (^) ( g ( 1)− (^) ) = f ( ) 3 = − 1
d. (^) ( f g (^) )( 4 ) = f (^) ( g (4) (^) ) = f ( 2 ) = − 2
10. a. (^) ( g f (^) )( ) 1 = g (^) ( f (1)) = g ( − (^1) ) = 3
b. (^) ( g f (^) )( 5 ) = g (^) ( f (5)) = g ( ) 1 = 4
c. (^) ( f g (^) ) ( 0 ) = f (^) ( g (0) (^) ) = f ( 5 )= 1
d. (^) ( f g (^) )( 2 ) = f (^) ( g (2) (^) ) = f ( 2 ) = − 2
11. f ( ) x = 2 x g x ( ) = 3 x^2 + 1 a.
f g f g f f
b.
2
g f g f g g
c. ( )(1) ( (1)) (2(1)) (2) 2(2) 4
f f f f f f
Section 5.1: Composite Functions
d.
2
2
g g g g g g
12. f ( ) x = 3 x + 2 g x ( ) = 2 x^2 − 1 a.
f g f g f f
b.
2
g f g f g g
c. ( )
f f f f f f
d.
2
2
g g g g g g
f x = x − g x = − x a. 2
2
f g f g f
f
b. 2
2
g f g f g g
c. 2
2
f f f f f f
d. ( g g )(0) = g g ( (0)) 2
2
g g
14. f ( ) x = 2 x^2^ g x ( ) = 1 − 3 x^2 a.
2
f g f g f f
b. 2
2
g f g f g g
c.
2
f f f f f f
Section 5.1: Composite Functions
f x x g x x
a. ( f g )(4) = f ( g (4))
2
f
f
f
b. ( )
2
g f g f g g
c. ( )
f f f f f f
d. ( g g )(0) = g g ( (0))
2
2
g
g
f x g x x x
a.
3
f g f g f
b.
( ) 3
g f g f g
g
g
c. ( f f )(1) = f ( f (1)) 3 1 1 3 2 3 (^3 ) 2 3 5 2 6 5
f
f
d.
3
g g g g g g
Chapter 5: Exponential and Logarithmic Functions
f x x g x x
a. ( f g )(4) = f ( g (4))
3/ 2
3
f
f
b.
3/ 2
3
(^2) or 4 2 2 2 2 1 7
g f g f g
g
g
c.
( )
3/ 2
3/ 2
f f f f f f
d. ( )(0) ( (0)) 2 0 1 (2) 2 2 1 2 3
g g g g g
g
g x
x x
Thus, x ≠ 2 ; so the domain of f g is
g x
x x
Thus, 2 3
x ≠ ; so the domain of f g is
(^) x x ≠ x ≠
g x
x x
Thus, x ≠ − 4 ; so the domain of f g is
g x
x x
Thus, 2 3
x ≠ − ; so the domain of f g is
(^2) , 0 3
(^) x x ≠ − x ≠
Chapter 5: Exponential and Logarithmic Functions
31. f ( ) x = 3 x + 1 g x ( ) = x^2 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.
2 2
f g x f g x f x x
Domain: (^) { x x is any real number}. b.
2 2
g f x g f x g x x x x
Domain: (^) { x x is any real number}. c. ( )( ) ( ( )) (3 1) 3(3 1) 1 9 3 1 9 4
f f x f f x f x x x x
Domain: (^) { x x is any real number}. d.
2
2 2 4
( g g )( ) x g g x ( ( )) g x
x x
Domain: (^) { x x is any real number}.
32. f ( ) x = x + 1 g x ( ) = x^2 + 4 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.
2 2 2
f g x f g x f x x x
Domain: (^) { x x is any real number}. b.
2 2 2
g f x g f x g x x x x x x
Domain: (^) { x x is any real number}.
c. ( )( ) ( ( )) ( 1) ( 1) 1 2
f f x f f x f x x x
Domain: (^) { x x is any real number}. d.
2
2 2 4 2 4 2
g g x g g x g x
x x x x x
Domain: (^) { x x is any real number}.
33. f ( ) x = x^2^ g x ( ) = x^2 + 4 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.
2
2 2 4 2
f g x f g x f x
x x x
Domain: (^) { x x is any real number}. b.
2
2 2 4
g f x g f x g x
x x
Domain: (^) { x x is any real number}. c.
2
22 4
( f f )( ) x f ( f ( )) x f x
x x
Domain: (^) { x x is any real number}. d.
2
2 2 4 2 4 2
g g x g g x g x
x x x x x
Domain: (^) { x x is any real number}.
Section 5.1: Composite Functions
34. f ( ) x = x^2^ + 1 g x ( ) = 2 x^2 + 3
The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.
2
2 2 4 2 4 2
f g x f g x f x
x x x x x
Domain: (^) { x x is any real number}.
b.
2
2 2 4 2 4 2 4 2
g f x g f x g x
x x x x x x x
Domain: (^) { x x is any real number}.
c.
2
2 2 4 2 4 2
f f x f f x f x
x x x x x
Domain: (^) { x x is any real number}.
d.
2
2 2 4 2 4 2 4 2
g g x g g x g x
x x x x x x x
Domain: (^) { x x is any real number}.
f x g x x x
The domain of f is (^) { x x ≠ (^1) }. The domain of g is { x x^ ≠^0 }. a. ( f g )( ) x = f ( g x ( )) 2 3 2 1 3 2 3 2 f x x x x x x = ^
= −
= (^) −
Domain (^) { x x ≠ 0, x ≠ (^2) }.
b. ( )( ) ( ( )) 3 1 2 3 1 2( 1) 3
g f x g f x g x
x x
Domain (^) { x x ≠ (^1) }
c. ( f f )( ) x = f ( f ( )) x 3 1 3 3 3 3 ( 1) 1 1 1 3( 1) 4
f x
x x x x x
Domain (^) { x x ≠ 1, x ≠ (^4) }.
d.
x g g x g g x g x x x
Domain (^) { x x ≠ (^0) }.
Section 5.1: Composite Functions
f x x g x x x
The domain of f is (^) { x x ≠ − (^3) }. The domain of g is (^) { x x ≠ (^0) }. a. ( f g )( ) x = f ( g x ( )) 2
2 2
2 3 2 3
2 2 3
f x
x x x x x
x
Domain 2 , 0 3
(^) x x ≠ − x ≠
b. ( )( ) ( ( ))
g f x g f x g x x
x x x x
Domain (^) { x x ≠ −3, x ≠ (^0) }.
c. ( f f )( ) x = f ( f ( )) x
f x x x x x x x x x x x x
Domain 3, 9 4
(^) x x ≠ − x ≠ −
d. ( )( ) ( ( )) 2 2 2 (^2 ) g g x g g x g x x x x
Domain (^) { x x ≠ (^0) }.
39. f ( ) x = x g x ( ) = 2 x + 3 The domain of f is (^) { x x ≥ (^0) }. The domain of g is (^) { x x is any real number}. a. ( f g )( ) x = f ( g x ( )) = f (^) ( 2 x + (^3) )= 2 x + 3
Domain 3 2
(^) x x ≥ −
Domain (^) { x x ≥ (^0) }.
c.
1/ 21/ 2 1/ 4 4
( f f )( ) x f ( f ( )) x f x
x x x x
Domain (^) { x x ≥ (^0) }.
d. ( )
g g x g g x g x x x x
Domain (^) { x x is any real number}.
40. f ( ) x = x − 2 g x ( ) = 1 − 2 x The domain of f is (^) { x x ≥ (^2) }. The domain of g is (^) { x x is any real number}. a. ( )
f g x f g x f x x x
Domain 1 2
(^) x x ≤ −
b.
g f x g f x g x x
Domain (^) { x x ≥ (^2) }.
Chapter 5: Exponential and Logarithmic Functions
c.
f f x f f x f x
x
Now, 2 2 0 2 2 2 4 6
x x x x
Domain (^) { x x ≥ (^6) }.
d. ( )
g g x g g x g x x x x
Domain (^) { x x is any real number}.
41. f ( ) x = x^2 + 1 g x ( ) = x − 1 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x ≥ (^1) }. a.
2
f g x f g x f x
x x x
Domain (^) { x x ≥ (^1) }.
b.
2
2 2
g f x g f x g x x x x
Domain (^) { x x is any real number}.
c.
2
2 2 4 2 4 2
f f x f f x f x
x x x x x
Domain (^) { x x is any real number}.
d.
g g x g g x g x x
Now, 1 1 0 1 1 1 1 2
x x x x
Domain (^) { x x ≥ (^2) }.
42. f ( ) x = x^2 + 4 g x ( ) = x − 2 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x ≥ (^2) }. a.
2
f g x f g x f x
x x x
Domain (^) { x x ≥ (^2) }.
b.
2
2 2
g f x g f x g x x x
Domain (^) { x x is any real number}.
c.
2
2 2 4 2 4 2
f f x f f x f x
x x x x x
Domain (^) { x x is any real number}.
d.
g g x g g x g x x
Now, 2 2 0 2 2 2 4 6
x x x x
Domain (^) { x x ≥ (^6) }.
Chapter 5: Exponential and Logarithmic Functions
b.^2 2
( )( ) ( ( )) x x
g f x g f x g − −
or 8 8
x x x x x (^) x x x (^) x x x x x x x x x x x x x x
Now, − x + 8 ≠ 0, so x ≠ 8. Also, from the domain of f , we know x ≠ 2. Domain of f g : (^) { x x ≠ 2, x ≠8 .}
c. 2 1 2
x x
f f x f f x f − −
x x x x x (^) x x x (^) x x x x x x x x x x x x
From the domain of f , we know x ≠ 2. Domain of f f : (^) { x x ≠2 .}
d.^4 2 5
( )( ) ( ( )) x x
g g x g g x g + −
(^4 ) 2 5 2 4 5 2 5 (^4) 4 (2 5) 2 5 2 4 5 (2 5) 2 5 4 4(2 5) 2( 4) 5(2 5) 4 8 20 2 8 10 25 9 16 9 16 8 33 8 33 or
x x x x x (^) x x x (^) x x x x x x x x x x x x x x
x − ≠ x ≠ Also, from the
domain of g , we know 5 2
x ≠.
Domain of f g : 5 , 33. 2 8
x x (^) ≠ x ≠
f g x = f g x = f^ ^ x ^ = ^ x = x
g f x = g f x = g x = x = x
f g x = f g x = f^ ^ x ^ = ^ x = x
g f x = g f x = g x = x = x
3 3 3 ( f g )( ) x = f ( g x ( )) = f x = x = x
( g f )( ) x = g ( f ( )) x = g x^3^ = 3 x^3 = x
48. ( f g )( ) x = f ( g x ( )) = f (^) ( x − (^5) )= x − 5 + 5 = x ( g f )( ) x = g ( f ( )) x = g (^) ( x + (^5) ) = x + 5 − 5 = x
Section 5.1: Composite Functions
f g x f g x f x
x x x
( )
( )
g f x g f x g x x
x x
f g x f g x f x
x x x
( )
( )
g f x g f x g x x
x x
f g x f g x f x b a a x b b a x b b x
( )
( )
g f x g f x g ax b ax b b a ax a x
f g x f g x f x x x x
g f x g f x g x x x x
53. H x ( ) = (2 x +3)^4 Answers may vary. One possibility is f ( ) x = x^4 , g x ( ) = 2 x + 3
23 H x ( ) = 1 + x Answers may vary. One possibility is f ( ) x = x^3^ , g x ( ) = 1 + x^2
55. H x ( ) = x^2 + 1 Answers may vary. One possibility is f ( ) x = x , g x ( ) = x^2 + 1 56. H x ( ) = 1 − x^2 Answers may vary. One possibility is f ( ) x = x , g x ( ) = 1 − x^2 57. H x ( ) = 2 x + 1 Answers may vary. One possibility is f ( ) x = x , g x ( ) = 2 x + 1 58. H x ( ) = 2 x^2 + 3 Answer may vary. One possibility is f ( ) x = x , g x ( ) = 2 x^2 + 3 59. f ( ) x = 2 x^3^ − 3 x^2 + 4 x − 1 g x ( ) = 2
3 2
f g x f g x f
( g f )( ) x = g ( f ( )) x = g 2 x^3^ − 3 x^2 + 4 x − 1 = 2
Section 5.1: Composite Functions
d. ( )( ) ( )( ) ( )
f g x g f x amx b m ax b cmx d cx d amx b amx bm cmx d cx d amx bm cmx d amx b cx d
Now, this equation will only be true if m = 1. Thus, f g = g f when m =1.
S r = π r r t = t t ≥
3
2 3
6
6
S r t S t
t
t
t
= π^ = π^
= π
Thus, ( ) 16 6 9
S t = π t.
V r = π r r t = t t ≥
3
3 3
9
9
V r t V t
t
t
t
= π^ = π^
= π
Thus, ( ) 32 9 81
V t = π t.
N t t t t C N N
2 2 2
C N t C t t t t t t
Thus, C t ( ) = 15, 000 + 800,000 t − 40, 000 t^2.
68. A r ( ) = π r^2 r t ( ) = 200 t
2 A r t ( ) = A 200 t = π 200 t = 40, 000π t Thus, A ( ) t = 40, 000π t.
p x x
x p x p
x C
p
p p
Thus,
p C p p
p x x
x p x p
C^ x
p
p p
Thus,
p C p p
71. V = π r h 2 h = 2 r V r ( ) = π r^2 (2 ) r = 2 π r^3
V = π r h h = r
( ) 1 2 (2 )^23 3 3
V r = π r r = π r
Chapter 5: Exponential and Logarithmic Functions
73. f (^) ( x (^) )= the number of Euros bought for x dollars; g (^) ( x ) = the number of yen bought for x Euros a. f (^) ( x (^) ) =0.7143 x b. g (^) ( x ) (^) =137.402 x
c. (^) ( )( ) ( ( )) ( ) ( )
g f x g f x g x x x
d. (^) ( )( 1000 ) 98.1462486 1000( ) 98,146.2486 yen
74. a. Given (^) ( ) 5 ( 32 ) 9
C F = F − and
K C ( (^) ) = C + 273 , we need to find K C ( (^) ( F (^) )).
( ( )) ( )
( )
or 9 9 9
b. (^) ( ( )) 5 80( ) 2297 80 299.7 kelvins 9
75. a. f (^) ( p (^) ) = p − 200
b. g (^) ( p (^) ) =0.80 p
c. (^) ( ) ( ) ( ( )) ( 0.80 ) 200 0.80 200
f g p f g p p p
This represents the final price when the rebate is issued on the sale price. ( )( ) ( ( )) 0.80 (^) ( 200 ) 0.80 160
g f p g f p p p
This represents the final price when the sale price is calculated after the rebate is given. Appling the 20% first is a better deal since a larger portion will be removed up front.
76. Given that f and g are odd functions, we know that f (^) ( − x ) (^) = − f (^) ( x )and g (^) ( − x (^) ) = − g (^) ( x )for all x in the domain of f and g , respectively. The composite function ( f g )( ) x = f (^) ( g (^) ( x ))has the following property: ( ( )) ( (^ )) ( ( ))
since is odd since is odd ( )( )
f g x f g x f g x g f g x f f g x
Thus, f g is an odd function.
77. Given that f is odd and g is even, we know that f (^) ( − x (^) ) = − f (^) ( x )and g (^) ( − x (^) ) = g (^) ( x ) for all x in the domain of f and g , respectively. The composite function ( f g )( ) x = f ( g ( x ))has the following property: ( (^ )) ( ( ))
since is even ( )( )
f g x f g x f g x g f g x
Thus, f g is an even function. The composite function ( g f )( ) x = g (^) ( f (^) ( x )) has the following property: ( ( )) ( (^ )) ( ( ))
since is odd since is even ( )( )
g f x g f x g f x f g f x g g f x
Thus, g f is an even function.
1. The set of ordered pairs is a function because there are no ordered pairs with the same first element and different second elements. 2. The function f ( ) x = x^2 is increasing on the interval (^) ( 0, ∞ (^) ). It is decreasing on the interval ( −∞, 0^ ). 3. The function is not defined when x^2 + 3 x − 18 = 0. Solve: 2 3 18 0 ( 6)( 3) 0
x x x x
x = − 6 or x = 3 The domain is { x | x ≠ −6, x ≠ 3}.
Chapter 5: Exponential and Logarithmic Functions
Range: { Star Wars , The Phantom Menace , E.T. the Extra Terrestrial , Jurassic Park , Forrest Gump }
27. To find the inverse, interchange the elements in the domain with the elements in the range:
Monthly Cost of Life Insurance Age
Domain: {$7.09, $8.40, $11.29} Range: {30, 40, 45}
28. To find the inverse, interchange the elements in the domain with the elements in the range:
Virginia Nevada Tennessee Texas
Unemployment Rate State
Domain: {11%, 5.5%, 5.1%, 6.3%} Range: {Virginia, Nevada, Tennessee, Texas}
29. Interchange the entries in each ordered pair: {(5, −3), (9, −2), (2, −1), (11, 0), ( 5,1)} − Domain: {5, 9, 2, 11, −5} Range: { 3,− −2, −1, 0, 1} 30. Interchange the entries in each ordered pair: {(2, −2), (6, −1), (8, 0), ( 3,1), (9, 2)} − Domain: {2, 6, 8, −3, 9} Range: { 2,− −1, 0, 1, 2} 31. Interchange the entries in each ordered pair: {(1, −2), (2, −3), (0, −10), (9,1), (4, 2)} Domain: {1, 2, 0, 9, 4} Range: { 2,− −3, −10, 1, 2} 32. Interchange the entries in each ordered pair: {( 8,− −2), ( 1, − −1), (0, 0), (1,1), (8, 2)} Domain: { 8,− −1, 0, 1, 8} Range: { 2,− −1, 0, 1, 2}
f x = x + g x = x −
( )
f g x f x
x
x x
( ) ( )
g f x g x x
x x
Thus, f and g are inverses of each other.
f x = − x g x = − x −
( )
f g x f x
x x x
( )
( )
g f x g x x
x x
Thus, f and g are inverses of each other.
f x = x − g x =^ x +
( ( ) ) 2 4 4 2 8 4 8 8
x f g x f
x
x x
Section 5.2: One-to-One Functions; Inverse Functions
( ( )) (4^ 8) (^4 8 ) 4 2 2
g f x^ g^ x x
x x
Thus, f and g are inverses of each other.
f x = x + g x = x −
( )
f g x f x
x x
x
( ( )^ ) (^2 6 ) (^1) (2 6) 3 3 3 2
g f x g x x x x
Thus, f and g are inverses of each other.
37. f ( ) x = x^3 − 8; g x ( ) = 3 x + 8
3
3 3
f g x f x
x x x
( ) 3 3 3 (^3 )
g f x g x x x x
Thus, f and g are inverses of each other.
38. f ( ) x = ( x − 2) ,^2 x ≥ 2; g x ( ) = x + 2
2
2
f g x f x
x
x x
2
g f x g x x x x
Thus, f and g are inverses of each other.
39. f ( ) x 1 ; g x ( )^1 x x
( )
x f g x f x x x
( )
g f x g x x x x
Thus, f and g are inverses of each other.
40. f ( ) x = x ; g x ( ) = x f (^) ( g x ( ) (^) ) = f (^) ( x ) = x g (^) ( f ( ) x (^) ) = g (^) ( x (^) )= x Thus, f and g are inverses of each other. 41. ( ) 2 3 ; ( )^4 4 2
f x x^ g x x x x
( )
x f g x f x x x x x x x x x
x (^) x x x x x x x x x x x
x