Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Solucionario Sullivan, Ejercicios de Matemáticas

Solucionario de precalculo 9 edición Sullivan

Tipo: Ejercicios

2019/2020

Subido el 28/03/2020

mario-alberto-jimenez
mario-alberto-jimenez 🇲🇽

4.7

(6)

1 documento

1 / 148

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
402
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Chapter 5
Exponential and Logarithmic Functions
Section 5.1
1.
() () ()
()
2
34353
49 15
36 15
21
f=− +
=− +
=− +
=−
2.
() ()
()
2
2
2
3423
429
418
fx x
x
x
=−
=−
=−
3.
2
2
1
() 25
x
fx x
=
()()
2
25 0
550
x
xx
−≠
+−
5, 5xx≠−
Domain:
{
}
5, 5xx x≠−
4. composite function;
()
()fgx
5. False:
()
() ( )()fgx f gx=
6. False. The domain of
()
()fgx is a subset of
the domain of ().gx
7. a.
()() ()
()
()
1101fg fg f===
b.
( )() ()
()
()
1101fg fg f−= = =
c.
( )() ()
()
()
1138gf gf g−= = −=
d.
()() ()
()
()
0010gf gf g===
e.
( )() ()
()
()
2238gg gg g−= = =
f.
()() ()
()
()
1137ff ff f−= = −=
8. a.
()() ()
()
()
1105fg fg f===
b.
( )() ()
()
()
22311fg fg f===
c.
( )() ()
()
()
2210gf gf g===
d.
()() ()
()
()
3310gf gf g===
e.
()() ()
()
()
1101gg gg g===
f.
( )() ()
()
()
3317ff ff f===
9. a.
()()( )()
1(1)14gf gf g−= = =
b.
( )() ( ) ()
0(0)05gf gf g===
c.
()()( )()
1(1)31fg fg f−= = =
d.
( )() ( ) ()
4(4)22fg fg f===
10. a.
()()()()
1(1)13gf gf g===
b.
()()()()
5(5)14gf gf g===
c.
()()()()
0(0)51fg fg f===
d.
( )() ( ) ()
2(2)22fg fg f===
11.
2
() 2 () 3 1fx x gx x==+
a.
()
2
( )(4) ( (4))
3(4) 1
(49)
2(49)
98
fg fg
f
f
=
=+
=
=
=
b.
2
( )(2) ( (2))
(2 2)
(4)
3(4) 1
48 1
49
gf gf
g
g
=
=⋅
=
=+
=+
=
c.
( ) (1) ( (1))
(2(1))
(2)
2(2)
4
ff ff
f
f
=
=
=
=
=
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Vista previa parcial del texto

¡Descarga Solucionario Sullivan y más Ejercicios en PDF de Matemáticas solo en Docsity!

Chapter 5

Exponential and Logarithmic Functions

Section 5.

1. (^) ( ) ( ) ( ) ( )

f = − + = − + = − + = −

2. (^) ( ) ( ) ( )

2 2 2

f x x x x

2 2

x f x x

( ) ( )

x x x

x ≠ − 5, x ≠ 5 Domain: (^) { x x ≠ −5, x ≠ (^5) }

4. composite function; f ( g x ( )) 5. False: f ( g x ( ) ) = ( fg )( ) x 6. False. The domain of ( fg ) ( ) x is a subset of the domain of g x ( ). 7. a. ( fg )( ) 1 = f (^) ( g ( ) (^1) ) = f ( 0 ) = − 1

b. ( fg ) ( − 1 ) = f (^) ( g ( − 1 ) (^) ) = f ( 0 ) = − 1

c. ( gf ) ( − 1 ) = g (^) ( f ( − 1 ) (^) ) = g ( − 3 ) = 8

d. ( gf )( 0 ) = g (^) ( f ( 0 )) = g ( − 1 ) = 0

e. ( gg )( − 2 ) = g (^) ( g ( − 2 )) = g ( ) 3 = 8

f. ( ff )( − 1 ) = f (^) ( f ( − 1 ) (^) ) = f ( − 3 ) = − 7

8. a. ( fg ) ( ) 1 = f (^) ( g ( ) (^1) ) = f ( 0 ) = 5

b. ( fg )( 2 ) = f (^) ( g ( 2 ) (^) ) = f ( − 3 ) = 11

c. ( gf )( 2 ) = g (^) ( f ( 2 ) (^) ) = g ( ) 1 = 0

d. ( gf )( ) 3 = g (^) ( f ( ) (^3) ) = g ( − 1 ) = 0

e. (^) ( gg (^) )( ) 1 = g (^) ( g (^) ( ) (^1) ) = g ( 0 )= 1

f. (^) ( ff (^) )( ) 3 = f (^) ( f (^) ( ) (^3) ) = f ( − (^1) ) = 7

9. a. (^) ( gf (^) ) ( − (^1) ) = g (^) ( f ( 1)− (^) ) = g ( ) 1 = 4

b. (^) ( gf (^) )( 0 ) = g (^) ( f (0) (^) ) = g ( 0 ) = 5

c. (^) ( fg (^) )( − (^1) ) = f (^) ( g ( 1)− (^) ) = f ( ) 3 = − 1

d. (^) ( fg (^) )( 4 ) = f (^) ( g (4) (^) ) = f ( 2 ) = − 2

10. a. (^) ( gf (^) )( ) 1 = g (^) ( f (1)) = g ( − (^1) ) = 3

b. (^) ( gf (^) )( 5 ) = g (^) ( f (5)) = g ( ) 1 = 4

c. (^) ( fg (^) ) ( 0 ) = f (^) ( g (0) (^) ) = f ( 5 )= 1

d. (^) ( fg (^) )( 2 ) = f (^) ( g (2) (^) ) = f ( 2 ) = − 2

11. f ( ) x = 2 x g x ( ) = 3 x^2 + 1 a.

f g f g f f

b.

2

g f g f g g

c. ( )(1) ( (1)) (2(1)) (2) 2(2) 4

f f f f f f

Section 5.1: Composite Functions

d.

2

2

g g g g g g

12. f ( ) x = 3 x + 2 g x ( ) = 2 x^2 − 1 a.

f g f g f f

b.

2

g f g f g g

c. ( )

f f f f f f

d.

2

2

g g g g g g

f x = xg x = − x a. 2

2

f g f g f

f

= ^ − 

b. 2

2

g f g f g g

c. 2

2

f f f f f f

d. ( gg )(0) = g g ( (0)) 2

2

g g

= ^ − 

14. f ( ) x = 2 x^2^ g x ( ) = 1 − 3 x^2 a.

2

f g f g f f

b. 2

2

g f g f g g

c.

2

f f f f f f

Section 5.1: Composite Functions

f x x g x x

a. ( fg )(4) = f ( g (4))

2

f

f

f

= ^ 
= ^ 
= ^ 

b. ( )

2

g f g f g g

c. ( )

f f f f f f

d. ( gg )(0) = g g ( (0))

2

2

g

g

= ^ 
= ^ 
19. ( ) 3 ( )^3

f x g x x x

a.

3

f g f g f

b.

( ) 3

g f g f g

g

g

= ^ 
= ^ 

c. ( ff )(1) = f ( f (1)) 3 1 1 3 2 3 (^3 ) 2 3 5 2 6 5

f

f

= ^ 
= ^ 

d.

3

g g g g g g

Chapter 5: Exponential and Logarithmic Functions

20. ( ) 3/ 2^ ( ) 2

f x x g x x

a. ( fg )(4) = f ( g (4))

3/ 2

3

f

f

= ^ 
= ^ 
= ^ 
= ^ 

b.

3/ 2

3

(^2) or 4 2 2 2 2 1 7

g f g f g

g

g

c.

( )

3/ 2

3/ 2

f f f f f f

d. ( )(0) ( (0)) 2 0 1 (2) 2 2 1 2 3

g g g g g

g

= ^ 

21. The domain of g is { x x ≠ 0 }. The domain of f

is { x x ≠ 1 }. Thus, g x ( ) ≠ 1 , so we solve:

g x

x x

Thus, x ≠ 2 ; so the domain of fg is

{ x x^ ≠^ 0,^ x ≠^2 }.

22. The domain of g is { x x ≠ 0 }. The domain of f

is { x x ≠ − 3 }. Thus, g x ( ) ≠ − 3 , so we solve:

g x

x x

Thus, 2 3

x ≠ ; so the domain of fg is

 (^) x xx ≠   

23. The domain of g is { x x ≠ 0 }. The domain of f

is { x x ≠ 1 }. Thus, g x ( ) ≠ 1 , so we solve:

g x

x x

Thus, x ≠ − 4 ; so the domain of fg is

{ x x^ ≠ −^ 4,^ x ≠^0 }.

24. The domain of g is { x x ≠ 0 }. The domain of f

is { x x ≠ − 3 }. Thus, g x ( ) ≠ − 3 , so we solve:

g x

x x

Thus, 2 3

x ≠ − ; so the domain of fg is

(^2) , 0 3

 (^) x x ≠ − x ≠   

Chapter 5: Exponential and Logarithmic Functions

31. f ( ) x = 3 x + 1 g x ( ) = x^2 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.

2 2

f g x f g x f x x

Domain: (^) { x x is any real number}. b.

2 2

g f x g f x g x x x x

Domain: (^) { x x is any real number}. c. ( )( ) ( ( )) (3 1) 3(3 1) 1 9 3 1 9 4

f f x f f x f x x x x

Domain: (^) { x x is any real number}. d.

2

2 2 4

( g g )( ) x g g x ( ( )) g x

x x

Domain: (^) { x x is any real number}.

32. f ( ) x = x + 1 g x ( ) = x^2 + 4 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.

2 2 2

f g x f g x f x x x

Domain: (^) { x x is any real number}. b.

2 2 2

g f x g f x g x x x x x x

Domain: (^) { x x is any real number}.

c. ( )( ) ( ( )) ( 1) ( 1) 1 2

f f x f f x f x x x

Domain: (^) { x x is any real number}. d.

2

2 2 4 2 4 2

g g x g g x g x

x x x x x

Domain: (^) { x x is any real number}.

33. f ( ) x = x^2^ g x ( ) = x^2 + 4 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.

2

2 2 4 2

f g x f g x f x

x x x

Domain: (^) { x x is any real number}. b.

2

2 2 4

g f x g f x g x

x x

Domain: (^) { x x is any real number}. c.

2

22 4

( f f )( ) x f ( f ( )) x f x

x x

Domain: (^) { x x is any real number}. d.

2

2 2 4 2 4 2

g g x g g x g x

x x x x x

Domain: (^) { x x is any real number}.

Section 5.1: Composite Functions

34. f ( ) x = x^2^ + 1 g x ( ) = 2 x^2 + 3

The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x is any real number}. a.

2

2 2 4 2 4 2

f g x f g x f x

x x x x x

Domain: (^) { x x is any real number}.

b.

2

2 2 4 2 4 2 4 2

g f x g f x g x

x x x x x x x

Domain: (^) { x x is any real number}.

c.

2

2 2 4 2 4 2

f f x f f x f x

x x x x x

Domain: (^) { x x is any real number}.

d.

2

2 2 4 2 4 2 4 2

g g x g g x g x

x x x x x x x

Domain: (^) { x x is any real number}.

35. ( ) 3 ( )^2

f x g x x x

The domain of f is (^) { x x ≠ (^1) }. The domain of g is { x x^ ≠^0 }. a. ( fg )( ) x = f ( g x ( )) 2 3 2 1 3 2 3 2 f x x x x x x = ^   

= −

= (^) −

Domain (^) { x x ≠ 0, x ≠ (^2) }.

b. ( )( ) ( ( )) 3 1 2 3 1 2( 1) 3

g f x g f x g x

x x

= ^ 

Domain (^) { x x ≠ (^1) }

c. ( ff )( ) x = f ( f ( )) x 3 1 3 3 3 3 ( 1) 1 1 1 3( 1) 4

f x

x x x x x

= ^ 

Domain (^) { x x ≠ 1, x ≠ (^4) }.

d.

x g g x g g x g x x x

= = ^ = = =

Domain (^) { x x ≠ (^0) }.

Section 5.1: Composite Functions

38. ( ) ( )^2

f x x g x x x

The domain of f is (^) { x x ≠ − (^3) }. The domain of g is (^) { x x ≠ (^0) }. a. ( fg )( ) x = f ( g x ( )) 2

2 2

2 3 2 3

2 2 3

f x

x x x x x

x

= ^ 

Domain 2 , 0 3

 (^) x x ≠ − x ≠   

b. ( )( ) ( ( ))

g f x g f x g x x

x x x x

= ^ 

Domain (^) { x x ≠ −3, x ≠ (^0) }.

c. ( ff )( ) x = f ( f ( )) x

f x x x x x x x x x x x x

= ^ 
= +^ = +

Domain 3, 9 4

 (^) x x ≠ − x ≠ −   

d. ( )( ) ( ( )) 2 2 2 (^2 ) g g x g g x g x x x x

= = ^ = = =

Domain (^) { x x ≠ (^0) }.

39. f ( ) x = x g x ( ) = 2 x + 3 The domain of f is (^) { x x ≥ (^0) }. The domain of g is (^) { x x is any real number}. a. ( fg )( ) x = f ( g x ( )) = f (^) ( 2 x + (^3) )= 2 x + 3

Domain 3 2

 (^) x x ≥ −   

b. ( g  f )( ) x = g ( f ( )) x = g ( x )= 2 x + 3

Domain (^) { x x ≥ (^0) }.

c.

1/ 21/ 2 1/ 4 4

( f f )( ) x f ( f ( )) x f x

x x x x

Domain (^) { x x ≥ (^0) }.

d. ( )

g g x g g x g x x x x

Domain (^) { x x is any real number}.

40. f ( ) x = x − 2 g x ( ) = 1 − 2 x The domain of f is (^) { x x ≥ (^2) }. The domain of g is (^) { x x is any real number}. a. ( )

f g x f g x f x x x

Domain 1 2

 (^) x x ≤ −   

b.

g f x g f x g x x

Domain (^) { x x ≥ (^2) }.

Chapter 5: Exponential and Logarithmic Functions

c.

f f x f f x f x

x

Now, 2 2 0 2 2 2 4 6

x x x x

Domain (^) { x x ≥ (^6) }.

d. ( )

g g x g g x g x x x x

Domain (^) { x x is any real number}.

41. f ( ) x = x^2 + 1 g x ( ) = x − 1 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x ≥ (^1) }. a.

2

f g x f g x f x

x x x

Domain (^) { x x ≥ (^1) }.

b.

2

2 2

g f x g f x g x x x x

Domain (^) { x x is any real number}.

c.

2

2 2 4 2 4 2

f f x f f x f x

x x x x x

Domain (^) { x x is any real number}.

d.

g g x g g x g x x

Now, 1 1 0 1 1 1 1 2

x x x x

Domain (^) { x x ≥ (^2) }.

42. f ( ) x = x^2 + 4 g x ( ) = x − 2 The domain of f is (^) { x x is any real number}. The domain of g is (^) { x x ≥ (^2) }. a.

2

f g x f g x f x

x x x

Domain (^) { x x ≥ (^2) }.

b.

2

2 2

g f x g f x g x x x

Domain (^) { x x is any real number}.

c.

2

2 2 4 2 4 2

f f x f f x f x

x x x x x

Domain (^) { x x is any real number}.

d.

g g x g g x g x x

Now, 2 2 0 2 2 2 4 6

x x x x

Domain (^) { x x ≥ (^6) }.

Chapter 5: Exponential and Logarithmic Functions

b.^2 2

( )( ) ( ( )) x x

g f x g f x g − −

= = ^ 

or 8 8

x x x x x (^) x x x (^) x x x x x x x x x x x x x x

= ^ 
 ^ −  
= −^ +^ −
= −^ +^ −

Now, − x + 8 ≠ 0, so x ≠ 8. Also, from the domain of f , we know x ≠ 2. Domain of fg : (^) { x x ≠ 2, x ≠8 .}

c. 2 1 2

x x

f f x f f x f − −

= = ^ 

x x x x x (^) x x x (^) x x x x x x x x x x x x

 ^ −  
= ^ ^  

From the domain of f , we know x ≠ 2. Domain of ff : (^) { x x ≠2 .}

d.^4 2 5

( )( ) ( ( )) x x

g g x g g x g + −

= = ^ 

(^4 ) 2 5 2 4 5 2 5 (^4) 4 (2 5) 2 5 2 4 5 (2 5) 2 5 4 4(2 5) 2( 4) 5(2 5) 4 8 20 2 8 10 25 9 16 9 16 8 33 8 33 or

x x x x x (^) x x x (^) x x x x x x x x x x x x x x

  • (^) + = −  +  (^) −  (^) −   + +  −  (^) −  =   +  (^) −  −  ^ −     = +^ +^ −
  • − − = +^ +^ −
  • − + = −^ − − − + − Now, 8 33 0, so 33. 8

x − ≠ x ≠ Also, from the

domain of g , we know 5 2

x ≠.

Domain of fg : 5 , 33. 2 8

 x x (^) ≠ x ≠   

f g x = f g x = f^ ^ x ^ = ^ x = x    

gf x = g f x = g x = x = x

f g x = f g x = f^ ^ x ^ = ^ x = x    

gf x = g f x = g x = x = x

3 3 3 ( fg )( ) x = f ( g x ( )) = f x = x = x

( gf )( ) x = g ( f ( )) x = g x^3^ = 3 x^3 = x

48. ( fg )( ) x = f ( g x ( )) = f (^) ( x − (^5) )= x − 5 + 5 = x ( gf )( ) x = g ( f ( )) x = g (^) ( x + (^5) ) = x + 5 − 5 = x

Section 5.1: Composite Functions

f g x f g x f x

x x x

= ^ + 
= ^ + −

( )

( )

g f x g f x g x x

x x

f g x f g x f x

x x x

= ^ − 
= − ^ − 

( )

( )

g f x g f x g x x

x x

f g x f g x f x b a a x b b a x b b x

= ^ − 
= ^ − +

( )

( )

g f x g f x g ax b ax b b a ax a x

f g x f g x f x x x x

= = ^ = = ⋅ =

g f x g f x g x x x x

= = ^ = = ⋅ =

53. H x ( ) = (2 x +3)^4 Answers may vary. One possibility is f ( ) x = x^4 , g x ( ) = 2 x + 3

23 H x ( ) = 1 + x Answers may vary. One possibility is f ( ) x = x^3^ , g x ( ) = 1 + x^2

55. H x ( ) = x^2 + 1 Answers may vary. One possibility is f ( ) x = x , g x ( ) = x^2 + 1 56. H x ( ) = 1 − x^2 Answers may vary. One possibility is f ( ) x = x , g x ( ) = 1 − x^2 57. H x ( ) = 2 x + 1 Answers may vary. One possibility is f ( ) x = x , g x ( ) = 2 x + 1 58. H x ( ) = 2 x^2 + 3 Answer may vary. One possibility is f ( ) x = x , g x ( ) = 2 x^2 + 3 59. f ( ) x = 2 x^3^ − 3 x^2 + 4 x − 1 g x ( ) = 2

3 2

f g x f g x f

( gf )( ) x = g ( f ( )) x = g 2 x^3^ − 3 x^2 + 4 x − 1 = 2

Section 5.1: Composite Functions

d. ( )( ) ( )( ) ( )

f g x g f x amx b m ax b cmx d cx d amx b amx bm cmx d cx d amx bm cmx d amx b cx d

Now, this equation will only be true if m = 1. Thus, fg = gf when m =1.

S r = π r r t = t t

3

2 3

6

6

S r t S t

t

t

t

= ^ 

= π^      = π^   

= π

Thus, ( ) 16 6 9

S t = π t.

V r = π r r t = t t

3

3 3

9

9

V r t V t

t

t

t

= ^ 

= π^      = π^   

= π

Thus, ( ) 32 9 81

V t = π t.

N t t t t C N N

2 2 2

C N t C t t t t t t

Thus, C t ( ) = 15, 000 + 800,000 t − 40, 000 t^2.

68. A r ( ) = π r^2 r t ( ) = 200 t

2 A r t ( ) = A 200 t = π 200 t = 40, 000π t Thus, A ( ) t = 40, 000π t.

69.^1 100, 0 400

p x x

x p x p

x C

p

p p

Thus,

p C p p

70.^1 200, 0 1000

p x x

x p x p

C^ x

p

p p

Thus,

p C p p

71. V = π r h 2 h = 2 r V r ( ) = π r^2 (2 ) r = 2 π r^3

72.^1

V = π r h h = r

( ) 1 2 (2 )^23 3 3

V r = π r r = π r

Chapter 5: Exponential and Logarithmic Functions

73. f (^) ( x (^) )= the number of Euros bought for x dollars; g (^) ( x ) = the number of yen bought for x Euros a. f (^) ( x (^) ) =0.7143 x b. g (^) ( x ) (^) =137.402 x

c. (^) ( )( ) ( ( )) ( ) ( )

g f x g f x g x x x

d. (^) ( )( 1000 ) 98.1462486 1000( ) 98,146.2486 yen

g f =

74. a. Given (^) ( ) 5 ( 32 ) 9

C F = F − and

K C ( (^) ) = C + 273 , we need to find K C ( (^) ( F (^) )).

( ( )) ( )

( )

or 9 9 9

K C F F
F
F
F
F
= ^ − +

b. (^) ( ( )) 5 80( ) 2297 80 299.7 kelvins 9

K C

75. a. f (^) ( p (^) ) = p − 200

b. g (^) ( p (^) ) =0.80 p

c. (^) ( ) ( ) ( ( )) ( 0.80 ) 200 0.80 200

f g p f g p p p

This represents the final price when the rebate is issued on the sale price. ( )( ) ( ( )) 0.80 (^) ( 200 ) 0.80 160

g f p g f p p p

This represents the final price when the sale price is calculated after the rebate is given. Appling the 20% first is a better deal since a larger portion will be removed up front.

76. Given that f and g are odd functions, we know that f (^) ( − x ) (^) = − f (^) ( x )and g (^) ( − x (^) ) = − g (^) ( x )for all x in the domain of f and g , respectively. The composite function ( fg )( ) x = f (^) ( g (^) ( x ))has the following property: ( ( )) ( (^ )) ( ( ))

since is odd since is odd ( )( )

f g x f g x f g x g f g x f f g x

Thus, fg is an odd function.

77. Given that f is odd and g is even, we know that f (^) ( − x (^) ) = − f (^) ( x )and g (^) ( − x (^) ) = g (^) ( x ) for all x in the domain of f and g , respectively. The composite function ( fg )( ) x = f ( g ( x ))has the following property: ( (^ )) ( ( ))

since is even ( )( )

f g x f g x f g x g f g x

Thus, fg is an even function. The composite function ( gf )( ) x = g (^) ( f (^) ( x )) has the following property: ( ( )) ( (^ )) ( ( ))

since is odd since is even ( )( )

g f x g f x g f x f g f x g g f x

Thus, gf is an even function.

Section 5.

1. The set of ordered pairs is a function because there are no ordered pairs with the same first element and different second elements. 2. The function f ( ) x = x^2 is increasing on the interval (^) ( 0, ∞ (^) ). It is decreasing on the interval ( −∞, 0^ ). 3. The function is not defined when x^2 + 3 x − 18 = 0. Solve: 2 3 18 0 ( 6)( 3) 0

x x x x

x = − 6 or x = 3 The domain is { x | x ≠ −6, x ≠ 3}.

Chapter 5: Exponential and Logarithmic Functions

Range: { Star Wars , The Phantom Menace , E.T. the Extra Terrestrial , Jurassic Park , Forrest Gump }

27. To find the inverse, interchange the elements in the domain with the elements in the range:

Monthly Cost of Life Insurance Age

Domain: {$7.09, $8.40, $11.29} Range: {30, 40, 45}

28. To find the inverse, interchange the elements in the domain with the elements in the range:

Virginia Nevada Tennessee Texas

Unemployment Rate State

Domain: {11%, 5.5%, 5.1%, 6.3%} Range: {Virginia, Nevada, Tennessee, Texas}

29. Interchange the entries in each ordered pair: {(5, −3), (9, −2), (2, −1), (11, 0), ( 5,1)} − Domain: {5, 9, 2, 11, −5} Range: { 3,− −2, −1, 0, 1} 30. Interchange the entries in each ordered pair: {(2, −2), (6, −1), (8, 0), ( 3,1), (9, 2)} − Domain: {2, 6, 8, −3, 9} Range: { 2,− −1, 0, 1, 2} 31. Interchange the entries in each ordered pair: {(1, −2), (2, −3), (0, −10), (9,1), (4, 2)} Domain: {1, 2, 0, 9, 4} Range: { 2,− −3, −10, 1, 2} 32. Interchange the entries in each ordered pair: {( 8,− −2), ( 1, − −1), (0, 0), (1,1), (8, 2)} Domain: { 8,− −1, 0, 1, 8} Range: { 2,− −1, 0, 1, 2}

f x = x + g x = x

( )

f g x f x

x

x x

= ^ − 
= ^ − +

( ) ( )

g f x g x x

x x

Thus, f and g are inverses of each other.

f x = − x g x = − x

( )

f g x f x

x x x

= ^ − − 
= − ^ − − 

( )

( )

g f x g x x

x x

Thus, f and g are inverses of each other.

f x = xg x =^ x +

( ( ) ) 2 4 4 2 8 4 8 8

x f g x f

x

x x

= ^ + 
= ^ + −

Section 5.2: One-to-One Functions; Inverse Functions

( ( )) (4^ 8) (^4 8 ) 4 2 2

g f x^ g^ x x

x x

Thus, f and g are inverses of each other.

f x = x + g x = x

( )

f g x f x

x x

x

= ^ − 
= ^ − + = − +

( ( )^ ) (^2 6 ) (^1) (2 6) 3 3 3 2

g f x g x x x x

Thus, f and g are inverses of each other.

37. f ( ) x = x^3 − 8; g x ( ) = 3 x + 8

3

3 3

f g x f x

x x x

( ) 3 3 3 (^3 )

g f x g x x x x

Thus, f and g are inverses of each other.

38. f ( ) x = ( x − 2) ,^2 x ≥ 2; g x ( ) = x + 2

2

2

f g x f x

x

x x

2

g f x g x x x x

Thus, f and g are inverses of each other.

39. f ( ) x 1 ; g x ( )^1 x x

( )

x f g x f x x x

= ^ = = ⋅ =

( )

g f x g x x x x

= ^ = = ⋅ =

Thus, f and g are inverses of each other.

40. f ( ) x = x ; g x ( ) = x f (^) ( g x ( ) (^) ) = f (^) ( x ) = x g (^) ( f ( ) x (^) ) = g (^) ( x (^) )= x Thus, f and g are inverses of each other. 41. ( ) 2 3 ; ( )^4 4 2

f x x^ g x x x x

= +^ = −

( )

x f g x f x x x x x x x x x

x (^) x x x x x x x x x x x

x

= ^ 
  +^  −
 ^ −  
= −^ +^ −
= −^ +^ −