























Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Unidad 2 Fundamentos de telecomunicaciones
Tipo: Apuntes
1 / 31
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
la mitad del tiempo y lejos durante la otra mitad. Por tanto, con el trenzado, el efecto acumulativo de la interferencia es igualen ambos cables (examine la figura 2.7).
Cada sección de cable tiene una carga de 4 cuando está en la parte alta del trenzado y de 3 cuando está en la parte baja. El efecto total del ruido en el receptor es 0 (14 -14). El trenzado no siempre elimina el impacto del ruido, pero lo reduce significativamente. Las ventajas del UTP son su precio y su facilidad de uso. El UTP es barato, flexible y fácil de instalar. En muchas tecnologías de LAN, incluyendo Ethernet y Anillo con paso de testigo, se usa UTP de gama alta. La figura 2.8 muestra un cable que contiene cuatro pares trenzados sin blindaje. Su impedancia típica es de 100 ohmios.
Categoría 1: Actualmente no reconocido por TIA/EIA. Previamente usado para comunicaciones telefónicas POTS, ISDN y cableado de timbrado. Categoría 2: Actualmente no reconocido por TIA/EIA. Previamente fue usado con frecuencia enredes token ring de 4 Mbit/s. Categoría 3: Actualmente definido en TIA/EIA-568-B, usado para redes de datos usando frecuencias de hasta 16 MHz. Históricamente popular (y todavía usado) para redes Ethernet de 10 Mbit/s. Debe tener al menos nueve trenzas por metro. Categoría 4: Actualmente no reconocido por TIA/EIA. Posee desempeño de hasta 20 MHz, y fue frecuentemente usado en redes token ring de 16 Mbit/s. También de nueve trenzas por metro.
Categoría 5: Actualmente no reconocido por TIA/EIA. Posee desempeño de hasta 100 MHz, y es frecuentemente usado en redes Ethernet de 100 Mbit/s. Es posible usarlo para Ethernet de gigabit 1000BASE-T. Categoría 5e: Actualmente definido en TIA/EIA-568-B. Posee desempeño de hasta 100 MHz, y es frecuentemente usado tanto para Ethernet 100 Mbit/s como para Ethernet 1000 Mbit/s(gigabit). Categoría 6: Actualmente definido en TIA/EIA-568-B. Posee desempeño de hasta 250 MHz, más del doble que las categorías 5 y 5e. Usado principalmente para Gigabit Categoría 6a: Especificación futura para aplicaciones de 10 Gbit/s. Categoría 7: Nombre informal aplicado a cableado de clase F de ISO/IEC
Los cables UTP se conectan habitualmente a los dispositivos de la red a través de un tipo de conector y un tipo de enchufe como el que se usa en las clavijas telefónicas. Los conectores pueden ser machos (el enchufe) o hembras (el receptáculo). Los conectores machos entran en los conectores hembras y tienen una pestaña móvil (denominada llave) que los bloquea cuando quedan ubicados en su sitio. Cada hilo de un cable está unido a un conductor (o patilla) del conector. Los conectores que se usan más frecuentemente para estos enchufes son los RJ45, que tienen ocho conductores, uno para cada hilo de cuatro pares trenzados.
Cable de par trenzado con blindado global (FTP):
El cable de par trenzado blindado (STP, Shielded Twisted Pair) tiene una funda de metal o un recubrimiento de malla entrelazada que rodea cada par de conductores aislados (véase la figura2.10). La carcasa de metal evita que penetre ruido electromagnético. También elimina un fenómeno denominado interferencia, que es un efecto indeseado de un circuito (o canal) sobre otro circuito (o canal). Se produce cuando una línea (que actúa como antena receptora) capta alguna de las señales que viajan por otra línea (que actúa como antena emisora). Este efecto se experimenta durante las conversaciones telefónicas cuando se oyen conversaciones de fondo. Blindando cada par de cable de par trenzado se pueden eliminar la mayor parte de las interferencias. El STP tiene las mismas consideraciones de calidad y usa los mismos conectores que el UTP, pero es necesario conectar el blindaje a tierra. Los materiales y los requisitos de fabricación del STP son más caros que los del UTP, pero dan como resultado cables menos susceptibles al ruido. Su impedancia típica es de 150 ohmios.
tamaño y el tipo de la cubierta exterior. Cada cable definido por las clasificaciones RG está adaptado para una función especializada. Los más frecuentes son:
RG- 8 con 50 Ohmios y es usado en Ethernet de cable grueso.RG- 9 con 50 Ohmios y es usado en Ethernet de cable grueso. RG- 11 con 50 Ohmios y es usado en Ethernet de cable grueso. RG- 58 con 50 Ohmios y es usado en Ethernet de cable fino. RG- 59 con 75 Ohmios y es usado para TV.
Conectores de los cables coaxiales: A lo largo de los años, se han diseñado un cierto número de conectores para su uso en el cable coaxial, habitualmente por fabricantes que buscaban soluciones específicas a requisitos de productos específicos. Unos pocos de los conectores más ampliamente usados se han convertido en normas. El más frecuente de todos ellos se denomina conector en barril por su forma. De los conectores en barril, el más popular es el conector de red a bayoneta (BNC,Bayonet NetworkConnector) (Ver figura 2.13), que se aprieta hacia dentro y se bloquea en su lugar dando media vuelta. Otros tipos de conectores de barril se atornillan juntos, lo que necesita más esfuerzo de instalación, o simplemente se aprietan sin bloqueo, lo que es menos seguro. Generalmente, un cable termina en un conector macho que se enchufa o se atornilla en su conector hembra correspondiente asociado al dispositivo. Todos los conectores coaxiales tienen una única patilla que sale del centro del conector macho y entra dentro de una funda de hierro del conector hembra. Los conectores coaxiales son muy familiares debido a los cables de TV y a los enchufes de VCR, que emplean tanto los de presión como los deslizantes.
Otros dos tipos de conectores que se usan frecuentemente son los conectores T y los terminadores. Un conector T (que se usa en la Ethernet de cable fino) permite derivar un cable secundario u otros cables de la línea principal. Un cable que sale de una computadora, por ejemplo, se puede ramificar para conectarse a varios terminales.
Los terminadores son necesarios en las topologías de bus donde hay un cable principal que actúa como una troncal con ramas a varios dispositivos, pero que en sí misma no termina en ningún dispositivo. Si el cable principal se deja sin terminar, cualquier señal que se transmita sobre él genera un eco que rebota hacia atrás e interfiere con la señal original. Un terminador absorbe la onda al final del cable y elimina el eco de vuelta.
Hasta este momento, se han visto cables conductores (de metal) que transmiten señales en forma de corriente. La fibra óptica, por otro lado, está hecha de plástico o de cristal y transmite las señales en forma de luz. Para comprender cómo funciona la fibra óptica es necesario explorar primero varios aspectos de la naturaleza de la luz.
Conectores para fibra óptica :
Los conectores para el cable de fibra óptica deben ser tan precisos como el cable en sí mismo. Con medios metálicos, las conexiones no necesitan ser tan exactas siempre que ambos conductores estén en contacto físico. Por otro lado, con la fibra óptica cualquier des-alineamiento o bien con otro segmento del núcleo o bien con un fotodiodo da como resultado que la señal se refleje hacia el emisor y cualquier diferencia en el tamaño de los dos canales conectados da como resultado un cambio en el ángulo de la señal. Además, la conexión debe completarse aunque las fibras conectadas no estén completamente unidas. Un intervalo entre ambos núcleos da como resultado una señal disipada; una conexión fuertemente presionada puede comprimir ambos núcleos y alterar el ángulo de reflexión. Teniendo en cuenta estas restricciones, los fabricantes han desarrollado varios conectores que son precisos y fáciles de usar. Todos los conectores populares tienen forma de barril y conectores en versiones macho y hembra. El cable se equipa con un conector macho que se bloquea o conecta con un conector hembra asociado al dispositivo a conectar.
Ventajas de la fibra óptica :
La principal ventaja que ofrece el cable de fibra óptica sobre los pares trenzados y el cable coaxial son: inmunidad al ruido, menor atenuación de la señal y ancho de banda mayor.
Inmunidad al ruido: Debido a que las transmisiones por fibra óptica usan luz en lugar de electricidad, el ruido no es importante. La luz externa, la única interferencia posible, es bloqueada por el recubrimiento opaco exterior del canal.
Menor atenuación de la señal: La distancia de transmisión de la fibra óptica es significativamente mayor que la que se consigue en otros medios guiados. Una señal puede transmitirse a lo largo de kilómetros sin necesidad de regeneración.
Ancho de banda mayor: El cable de fibra óptica puede proporcionar anchos de banda (y por tanto tasas de datos) sustancialmente mayores que cualquier cable de par trenzado o coaxial. Actualmente, las tasas de datos y el uso del ancho de banda en cables de
Los medios no guiados, o comunicaciones sin cable, transportan ondas electromagnéticas sin usar un conductor físico. En su lugar, las señales se radian a través del aire (o, en unos pocos casos, el agua) y, por tanto, están disponibles para cualquiera que tenga un dispositivo capaz de aceptarlas. La sección del espectro electromagnético definido como comunicación de radio se divide en ocho rangos, denominados bandas, cada una de ellas reguladas por las autoridades gubernamentales. Estas bandas se clasifican desde frecuencia muy baja (VLF, Very Low Frequency) a frecuencia extremadamente alta (EHF, Extremely High Frequency). La figura 2.22 muestra las ocho bandas y sus acrónimos.
La transmisión de ondas de radio utiliza cinco tipos de propagación distintos: superficie, troposférica, ionos-feérica, línea de visión y espacio (véase la figura 2.23).
La tecnología de radio considera que la tierra está rodeada por dos capas de atmósfera: la troposfera y la ionosfera. La troposfera es la porción de la atmósfera que se extiende hasta aproximadamente 45 km desde la superficie de la tierra (en terminología de radio, la troposfera incluye una capa de máxima altitud denominada estratosfera) y contiene aquello en lo que nosotros generalmente pensamos como el aire. Las nubes, el viento, las variaciones de temperatura y el clima en general ocurren en la troposfera, al igual que los viajes de avión. La ionosfera es la capa de atmósfera por encima de la troposfera pero por debajo del espacio. Está más allá de lo que nosotros denominamos atmósfera y contiene partículas libres cargadas eléctricamente (de aquí el nombre).
Propagación en superficie: En la propagación en superficie, las ondas de radio viajan a través de la porción más baja de la atmósfera, abrazando a la tierra. A las frecuencias más bajas (menos de 2 Mhz), las señales emanan en todas las direcciones desde la antena de transmisión y sigue la curvatura del planeta. La distancia depende de la cantidad de potencia en la señal: cuanto mayor es la potencia, mayor es la distancia. La propagación en superficie también puede tener lugar en el agua del mar.
Propagación troposférica: La propagación troposférica puede actuar de dos formas. O bien se puede dirigir la señal en línea recta de antena a antena (visión directa) o se puede radiar con un cierto ángulo hasta los niveles superiores de la troposfera donde se refleja hacia la superficie dela tierra. El primer método necesita que la situación del receptor y el transmisor esté dentro de distancias de visión, limitadas por la curvatura de la tierra en relación a la altura de las antenas. El segundo método permite cubrir distancias mayores.
Propagación ionos-feérica: En la propagación ionos-feérica, las ondas de radio de más alta frecuencia (2 a 30 Mhz) se radian hacia la ionosfera donde se reflejan de nuevo hacia la tierra. La densidad entre la troposfera y la ionosfera hace que cada onda de radio se acelere y cambie de dirección, curvándose de nuevo hacia la tierra. Este tipo de transmisión permite cubrir grandes distancias con menor potencia de salida.
Propagación por visión directa: En la propagación por visión directa, se transmiten señales demuy alta frecuencia (más de 30 Mhz) directamente de antena a antena siguiendo una línea recta. Las antenas deben ser direccionales, estando enfrentadas entre sí, y o bien están suficientemente altas o suficientemente juntas para no verse afectadas por la curvatura de la tierra. La propagación por visión directa es compleja porque las transmisiones de radio no se pueden enfocar completamente. Las ondas emanan hacia arriba y hacia abajo así como hacia delante y pueden reflejar sobre la superficie de la tierra o partes de la atmósfera. Las ondas reflejadas que llegan a la antena receptora más tarde que la porción directa de la transmisión puede corromper la señal recibida.
Propagación por el espacio: La propagación por el espacio utiliza como retransmisor satélites en lugar de la refracción atmosférica. Una señal radiada es
HF: Las señales de frecuencia alta (HF, High Frequency) usan propagación ionosférica. Estas señales se desplazan dentro de la ionosfera, donde la diferencia de densidad las refleja de nuevo hacia la tierra. Los usos de señales HF incluyen los radio aficionados (ham radio), la radio de bandas de ciudadanos (CB), las emisiones internacionales, comunicaciones militares, comunicación de larga distancia para aviones y barcos, teléfonos, telégrafos y faxes (véase la figura 2.27).
VHF: La mayoría de las ondas de frecuencia muy alta (VHF, Very High Frequency) usan propagación de visión directa. Los usos del VHF incluyen la televisión VHF, la radio FM, la radio AM de los aviones y la ayuda de navegación de los aviones (véase la figura 2.28).
UHF: Las ondas de frecuencia ultra alta (UHF, Ultra High Frequency) siempre se usan en propagación de visión directa. Los usos para el UHF incluyen la televisión UHF, los teléfonos móviles, la radio celular, los buscadores y los enlaces de microondas (véase la figura 2.29).Observe que la comunicación con microondas comienzan en la frecuencia 1 GHz de la banda UHF y continúa hasta las bandas SHF y EHF.
SHF: Las ondas de frecuencia súper alta (SHF, Super High Frequency) se transmiten usando principalmente propagación por visión directa y algo de propagación espacial. Los usos del SHF incluyen las microondas terrestres y satélite y la comunicación radar (véase la figura 2.30).
EHF: Las ondas de frecuencia extremadamente alta (EHF, Extremely High Frequency) usan la propagación espacial. Los usos para el EHF son predominantemente científicos e incluyen radar, satélite y comunicaciones experimentales (véase la figura 2.31). La tabla siguiente resume las diferentes bandas y sus características de propagación.
Antenas: Para las comunicaciones con microondas terrestres se usan dos tipos de antenas: parabólicas y de cornete (véase la figura 2.33).Una antena parabólica se basa en la geometría de una parábola: cada línea paralela a la línea de simetría (línea de vista) refleja la curva en ángulos tales que inciden en un punto común denominado foco. El plato parabólico funciona como un embudo, capturando un amplio rango de ondas y dirigiéndolas a un punto común. De esta forma, se recupera más señal de lo que sería posible con un receptor de punto único. Las transmisiones de salida se radian a través de un cornete apuntado al disco. Las microondas golpean el disco y son deflexionadas hacia fuera en sentido contrario al camino de recepción.
Una antena de cornete se parece a una cuchara gigante. Las transmisiones de salida son radiadas hacia arriba de un mástil (que se parece al mango) y deflexionadas hacia fuera en una serie de estrechos haces paralelos mediante la cabeza curvada. Las transmisiones recibidas son recolectadas por la forma de cuchara del cornete, de forma similar a la antena parabólica, y son deflexionadas mástil abajo.
SATELITE: Las transmisiones vía satélite se parecen mucho más a las transmisiones con microondas por visión directa en la que las estaciones son satélites que están orbitando la tierra. El principio es el mismo que con las microondas terrestres, excepto que hay un satélite actuando como una antena súper alta y como repetidor (véase la figura 2.34). Aunque las señales que se transmiten vía satélite siguen teniendo que viajar en línea recta, las limitaciones impuestas sobre la distancia por la curvatura de la tierra son muy reducidas. De esta forma, los satélites retransmisores permiten que las señales de microondas se puedan transmitir a través de continentes y océanos con un único salto.
Las microondas vía satélite pueden proporcionar capacidad de transmisión a y desde cualquier localización en la tierra, sin importar lo remota que esta sea. Esta ventaja hace que las comunicaciones de alta calidad estén disponibles en lugares no desarrollados del mundo sin necesidad de hacer grandes inversiones en infraestructura de tierra. Por supuesto, los satélites en sí mismos son extremadamente caros, pero alquilar tiempo o frecuencias de uno de ellos puede ser relativamente barato.
Satélites geoestacionarios: La propagación por línea de vista necesita que las antenas emisoras y receptoras estén fijas/estáticas con respecto a la localización de las demás en todo momento (una antena debe poder ver a la otra). Por esta razón, un satélite que se mueve más deprisa o más despacio que la rotación de la tierra es útil únicamente para periodos de tiempo cortos (de la misma forma que un reloj parado solamente es exacto dos veces al día). Para asegurar una comunicación constante, el satélite debe moverse a la misma velocidad que la tierra de forma que parezca que está fijo en un cierto punto. Estos satélites se llaman geosincrónicos o geoestacionarios. Debido a que la velocidad orbital depende de la distancia desde el planeta, solamente hay una órbita que puede ser geosincrónica. Esta órbita se produce en el plano ecuatorial y está aproximadamente a 36.000 kilómetros de la superficie de la tierra. Pero un único satélite geosincrónico no puede cubrir toda la tierra. Un satélite en órbita tiene contacto por línea de vista con un gran número de estaciones, pero la curvatura de la tierra sigue haciendo que gran parte del planeta todavía no se pueda ver. Por ello, es necesario tener un mínimo de tres satélites equidistantes entre sí en órbita geosincrónica para proporcionar una transmisión global completa. La figura 2. muestra tres satélites, separados 120 grados entre sí en una órbita geosincrónica alrededor del ecuador. Es una vista desde el Polo Norte.
Por ejemplo, es posible que un trozo de carbón encendido no emita luz visible, pero que sí emita la radiación infrarroja que sentimos como calor. Mientras más caliente se encuentre un objeto, tanta más radiación infrarroja emitirá. A la temperatura normal del cuerpo, la mayoría de las personas irradian más intensamente en el infrarrojo, con una longitud de onda de 10 micrones (millonésima de metro). En la oscuridad los detectores de infrarrojos pueden ver objetos que no son posibles ver a luz visibles gracias a que dichos objetos irradian calor. En una foto de la Tierra tomada desde un satélite empleando para ello tecnología de rayos infrarrojos, se pueden diferenciar zonas de diferentes colores. Por medio de esos colores se puede conocer la temperatura ambiente existente en esos momentos en cada zona específica de una zona geográfica fotografiada.
Los rayos infrarrojos de baja potencia se utilizan para accionar diferentes dispositivos de control remoto como, por ejemplo, el mando de los televisores, intercomunicación entre equipos y computadoras, visión nocturna, fotografía nocturna, etc., mientras que los de alta potencia se emplean para generar calor.
Los rayos infrarrojos tienen una longitud de onda cercana a la de la luz y, por lo tanto, con un comportamiento similar, tanto en sus ventajas como en sus inconvenientes. Entre estas características, la más evidente es que no pueden atravesar objetos sólidos como paredes, lo que supone un serio freno a su capacidad de difusión. Bien es cierto que no hay mal que por bien no venga y esta misma limitación supone un seguro contra receptores no deseados. También, debido a su alta frecuencia, presentan una fuerte resistencia a las interferencias electromagnéticas artificiales radiadas por otros dispositivos, pudiendo, además, alcanzar grandes velocidades de transmisión; de hecho, se han desarrollado sistemas que operan a 100Mbps.