Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Vetores e suas propriedades em física e engenharia, Exercícios de Matemática

Este documento aborda diferentes questões sobre vetores e suas propriedades, incluindo produto escalar, produto vetorial, vetor área, unidade normal e perpendicular, além de cálculos relacionados à física e engenharia. Também são apresentados exemplos e problemas para aplicação dos conceitos.

Tipologia: Exercícios

2013

Compartilhado em 06/01/2013

josimar-batista-9
josimar-batista-9 🇧🇷

4.8

(15)

37 documentos

1 / 10

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
1
QUEST TUTORIALS
Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
1.
a b×
+
(
)
a b. 2
=
(A)
a2
+
b2
(B)
-
b2
(C)
b2
(D) None of these
2. The area of a triangle whose vertices
are, A (1, - 1, 2), B (2, 1, - 1) and
C (3, - 1, 2) is :
(A) 13 (B)
13
(C) 6 (D)
6
3. If
a b&
are two non - zero vectors,
then the component of
b
along
a
is
(A)
(
)
.
.
a b a
b b
(B)
(
)
.
.
a b b
a a
(C)
(
)
.
.
a b b
a b
(D)
(
)
.
.
a b a
a a
4. If
a b c+ +
= 0, then which relation
is correct .
(A)
a b c= =
= 0
(B)
a b b c c a. . .= =
(C)
a b b c c a× = × = ×
(D) None of these
5. If ABCDEF is a regular hexagon and
AB AC AD AE AF
+ + + +
= λ
AD
,
then λ =
(A) 2 (B) 3
(C) 4 (D) 6
6. If O be the circumcentre and O be
the orthocentre of a triangle ABC, then
OA OB OC
+ +
=
(A) 2
O
O
(B) 2
O
O
(C)
O
O
(D)
O
O
7. If in the given fig.
OA
=
a
,
OB
=
b
and AP : PB = m : n, then
OP
=
(A)
m a n b
m n
+
+
(B)
n a m b
m n
+
+
(C) m
a
- n
b
(D)
m a n b
m n
8. If
a i j k= + +2 2 3
,
b i j k= + +
2
and
c i j= +3
, then
a
+ t
b
is
perpendicular to
c
if t =
(A) 2 (B) 4
(C) 6 (D) 8
9. The area of the parallelogram whose
diagonals are,
a i j k= + 3 2
and
b i j k= +
3 4
is :
(A) 10
(B) 5
3
(C) 8 (D) 4
10.
a
. {(
b
+
c
) × (
a
+
b
+
c
)} =
(A) 0
(B) [
a
b
c
] + [
b
c
a
]
(C) [
a
b
c
](D) None of these
O
PBA
Vectors
www.myengg.com
The Engineering Universe
1
Entrance Exams ,Engineering colleges in india, Placement details of IITs and NITs
www.myengg.com
pf3
pf4
pf5
pf8
pf9
pfa

Pré-visualização parcial do texto

Baixe Vetores e suas propriedades em física e engenharia e outras Exercícios em PDF para Matemática, somente na Docsity!

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

a × b + ( )

a. b

2

(A)

a

b

2 (B)

a

b

2

(C)

a

b

2 (D) None of these

2. The area of a triangle whose vertices are, A (1, - 1, 2), B (2, 1, - 1) and C (3, - 1, 2) is :

(A) 13 (B) 13

(C) 6 (D) 6

3. If

a & b are two non - zero vectors,

then the component of

b along

a

is

(A)

 ^ 

a  b a b b

(B)

 ^ 

a  b b a a

(C)

 ^ 

a b b a b

(D)

 ^ 

a  b a a a

4. If

 ^ 

a + b + c = 0, then which relation is correct.

(A)

 ^ 

a = b = c = 0

(B)

 ^ ^   

a. b = b. c =c .a

(C) ^

a × b = b × c = c ×a (D) None of these

5. If ABCDEF is a regular hexagon and

AB AC AD AE AF

→ → → → →

        • (^) = λ AD

→ , then λ = (A) 2 (B) 3 (C) 4 (D) 6

6. If O be the circumcentre and O′ be the orthocentre of a triangle ABC, then

OA OB OC

→ → →

    • (^) =

(A) 2 OO′

→ (B) (^2) ′

→ O O

(C)

OO′

(D) ′

→ O O

7. If in the given fig.

OA

a (^) ,

OB

b

and AP : PB = m : n, then

OP

(A) mam^ n bn

+ (B)^

n a m b m n

(C) m

a - n

b

(D)

ma n b m n

8. If

^ a^ =^2 i^ +^2 j^ +^3 k^ , b = − i + 2 j^ +k and

c = 3 i +j^ , then

a

  • t

b is perpendicular to

c

if t = (A) 2 (B) 4 (C) 6 (D) 8

9. The area of the parallelogram whose diagonals are,

a = 3 i + j^ − 2 k

and

b = i − 3 j^ + 4 k

is :

(A) 10 3 (B) 5 3 (C) 8 (D) 4

10.

a. {(

b

c

) × (

a

b

c

(A) 0

(B) [

a

b

c

] + [

b

c

a

]

(C) [

a

b

c

] (D) None of these

O

A P B

Vectors

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

11. If the vectors

2 i^ − 3 j

, i + j^ − k and

3 i − k form three concurrent edges of a parallelopiped, then the volume of the parallelopiped is : (A) 8 (B) 10 (C) 4 (D) 14

12. (^ )^.

 ^ 

a × b c =   a  

b

c

, if :

(A)

a

b

b

c

(B)

b

c

c

a

(C)

c

a

a

b

(D)

a

b

b

c

c

a

13. If

a

b

c

are unit vectors such that

a

b

c

= 0, then

a

b

b

c

c

a

(A) 1 (B) 3

(C) - 3

(D) 3

14. If the position vectors of the points

A, B, C be

a

b

a

b

respectively then the points A, B, C are : (A) Collinear (B) Non − collinear (C) Form a right angled triangle (D) None of these

15. If

a

b

are the position vectors of A & B respectively, then the position vector of a point C on AB produced

such that

AC

= 3 AB

→ is : (A) 3

a -

b

(B) 3

b

a

(C) 3

a

b

(D) 3

b

a

16. The position vectors of the points A,

B & C are

i (^) +j

, j^ + k and k^ +i respectively. The vector area of the

∆ ABC = ± (^12)

α

, where

α

(A)

− i + j^ +k

(B) i − j^ +k

(C) i^ + j^ − k (D) i^ + j^ +k

17. If

a = (1, − 1, 1) &

c

then the vector

b

satisfying,  a ×

b

c &

a

b

= 1, is : (A) (1, 0, 0) (B) (0, 0, 1) (C) (0, − 1, 0) (D) None of these

18. If

a ×

b

b ×^

c ≠^ 0, then for some scalar k : (A)

a

c

= k

b

(B)

a +

b

= k

c (C)  b

c = k  a

(D) None of these

19. P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then

OA OB OC OD

→ → → →

is :

(A) OP

→ (B) 2 OP

(C) 3 OP

→ (D) (^4) OP

20. A unit vector in the xy − plane which is perpendicular to 4 i − 3 j^ + k is :

(A)

i (^) +j 2

(B) 15 ( 3 i + 4 j)

(C) 15 ( 3 i^ − 4 j) (D) None of these

21. If the position vectors of the points

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

(A) 169 ( i^ +^2 j^ −^8 k)

(B) 691 ( i^ + 2 j^ − 8 k)

(C) 691 ( −^ i^ −^2 j^ +^8 k)

(D) 691 ( − i − 2 j^ + 8 k)

30. Let

b = 3 j + 4 k^ ,

a = i +j

and let

b 1 &b 2

be component vectors of

b

parallel and perpendicular to

a

. If

b 1

= 32 i^ +^32 j, then

b 2 =

(A) 32 i^ +^32 j^ +^4 k

(B) − 32 i^ + 32 j^ + 4 k

(C) − 23 i + 32 j (D) None of these

31. If the points whose position vectors

are 3 i^ − 2 j^ − k, 2 i + 3 j^ − 4 k,

− i^ + j^ + 2 k and 4 i^ + 5 j^ + λ k lie on a plane, then λ =

(A) - 14617 (B)

(C) -

(D)

32. A and B are two points. The position vector of A is 6b − 2a. A point P divides the line AB in the ratio 1 : 2. If

a^ ^ −b

is the position vector of P, then the position vector of B is given by : (A) 7 a^ − 15 b (B) 7 a^ + 15 b

(C) 15 a^ −^7 b (D) 15 a^ +^7 b

33. If

a & b are unit vectors making an

angle θ with each other then 

a − b is : (A) 1 (B) 0

(C) cos θ 2 (D) 2 sin

θ 2

34. If the vectors,

a i + j +k

, i + b j^ +k

and i^ + j^ + ck (a ≠ b ≠ c ≠ 1) are coplanar, then the value of, 1 1

− a +^ − b +^1 −c =

(A) - 1 (B) - (^12)

(C)

(D) 1

35. If C is the middle point of AB and P is any point outside AB, then :

(A)

PA PB PC

→ → →

  • =

(B) PA PB PC

→ → →

  • = 2

(C) PA PB PC

→ → →

    • = 0

(D) PA PB PC

→ → →

    • 2 = 0

36.

 ^ 

a , b , c are three non − zero, non − coplanar vectors and

p , q , r are three other vectors such that,



p (^)  ^  b c a b c

= ×

. ×

 ^ 

q (^)  ^  c a a b c

= ×

. ×

and

 ^

r (^)  ^ 

a b a b c

×

. ×

, then [

p , q , r] equals

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

(A) ^

a. b × c (B)^  ^1  a. b ×c (C) 0 (D) None of these

37. Let

a = 2 i − j +k^ ,

b = i + 2 j −k

c = i + j^ − 2 k be three vectors. A

vector in the plane of

b & c whose

projection on

a is of magnitude

is : (A) 2 i − 3 j^ + 3 k (B) 2 i + 3 j^ + 3 k

(C) − 2 i^ − j^ + 5 k (D) 2 i^ + j^ + 5 k

38. The magnitudes of mutually

perpendicular forces

 ^ 

a , b & c are 2, 10 and 11 respectively. Then the magnitude of its resultant is : (A) 12 (B) 15 (C) 9 (D) None of these

39. A vector (^) a has components 2p & 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the anti-clockwise sense. If (^) a has components p + 1 & 1 w.r.t. the new system, then :

(A) p = 0 (B) p = 1 or − (^13)

(C) p = − 1 or

(D) p = 1 or − 1

40. Let the value of ,

p

= (x + 4y)  a + (2x + y + 1)

b and

q

= (y − 2x + 2)  a + (2x - 3y - 1)

b , where

a

b are^ non-collinear vectors. If 3

p

q , then the value of x & y, will be : (A) - 1, 2 (B) 2, - 1 (C) 1, 2 (D) 2, 1

41. If (x, y, z) ≠ (0, 0, 0) and

( i + j^ + 3 k)x +^ ( 3 i − 3 j^ + k)y +

( − 4 i^ + 5 j) z =^ λ^ (^ x i^ +^ y j^ +^ z k), then

the value of λ will be : (A) - 2, 0 (B) 0 , - 2 (C) - 1, 0 (D) 0, - 1

42. If three non - zero are,  a = a i 1  + a j 2  +a k 3 ^ ,

b = b i 1  + b j 2 ^ +b k 3 

and

c = c i 1  + c j 2  +c k 3 

. If

c

is the unit vector perpendicular to the vectors   a & b and the angle between^

a &b

is π 6 , then

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

2

is equal to :

(A) 0 (B)

1

2 1

2 1 ( Σ a ) ( Σ b ) ( Σc^2 )

(C) 1 (D)

( Σ a 12 ) ( Σb 12 ) 4

43. The position vector of coplanar points A, B, C, D are

 ^  

a , b , c &d

respectively in such a way that,

 ^ ^ 

a − d b − c =^ ( ) .( )

b − d c − a = 0, then the point D of the ∆ ABC is : (A) Incentre (B) Circumcentre

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

53. If

 ^ 

a , b , c are coplanar vectors, then

(A)

a b c

b c a

c a b

(B)

a a a b a

b a b b b

c a c b c

(C)

a c a b a

b c b b c

c c c b b

(D)

a a b c a

b a a c c

c a c c b

54. A unit vector which is coplanar to

vector, i + j^ + 2 k and i^ + 2 j^ +k and

perpendicular to i^ + j^ + k, is :

(A)

i (^) −j 2 (B)^ ±^

j^ −k 

(C)

k (^) −j 2

(D)

i + j (^) +k 3

55. If

x. a = 0 ,

x. b = 0 &^

x. c= 0 for

some non - zero vector

x , then the true statement is :

(A) [ ^ ]

a b c = 0^ (B)^ [ ]

 ^ 

a b c ≠^0

(C) [ ]

 ^ 

a b c = 1^ (D) None of these

56. If

a has magnitude 5 and points north-east & vector

b

has magnitude 5 & points north-west, then 

a

b

is equal to : (A) 25 (B) 5

(C) 7

(D) 5

57. In a regular hexagon ABCDEF, AE

is equal to :

(A) AC AF AB

→ → →

    • (B) AC AF AB

→ → →

(C) AC AB AF

→ → →

  • − (D) None of these

58. OD DA DB DC

→ → → →

      • =

(A) OA OB OC

→ → →

    • (B) OA OB BD

→ → →

(C) OA OB OC

→ → →

    • (D) None of these

59. In a ∆ ABC, if (^2) AC

→ = 3 (^) CB

→ , then

2 OA

  • 3 OB

→ equals :

(A) 5 OC

→ (B) - OC

(C) OC

→ (D) None of these

60. If AO^ OB

→ →

  • (^) = BO OC

→ →

  • (^) , then A, B, C form : (A) Equilateral triangle (B) Eight angled triangle (C) Isosceles triangle (D) Line

61. If the position vectors of A and B are i (^) + 3 j (^) − 7 k and 5 i − 2 j (^) + 4 k, then

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

the direction cosine of (^) AB

→ along y - axis is :

(A) 4 162

(B) - 5

(C) - 5 (D) 11

62. The point B divides the arc AC of a quadrant of a circle in the ratio 1 : 2.

If O is the centre and (^) OA

a and

OB

b , then the vector

OC

is : (A)

b − 2 a (B) 2

a −b

(C) (^3 )

b − a (D)^ None of these

63. The points D, E, F divide BC, CA & AB of the triangle ABC in the ratio 1 : 4, 3 : 2 & 3 : 7 respectively & the point K divides AB in the ratio 1 : 3,

then (^ AD^ BE^ CF)

→ → →

    • (^) : CK

(A) 1 : 1 (B) 2 : 5 (C) 5 : 2 (D) None of these

64. If vector

a = 2 i − 3 j + 6 k^ and vector

b = − 2 i + 2 j −k

, then

Pr Pr

ojection of vector a on vector b ojection of vector b on vector a

   (^) 

(A) 37 (B)

(C) 3 (D) 7

65. If

r

be position vector of any point on a sphere &

a &b

are respectively position vectors of the extremities of a diameter, then : (A)

r.^ (

a −b

) = 0

(B)

r. (

r −a

) = 0

(C) (

r +a

). (

r +b

) = 0

(D) (

r − a). (

r −b

) = 0

66. If

 ^ 

a × (b ×c) = 0, then :

(A)

| | | | .| |

 ^ 

a = b c

(B)

b parallel to

c

(C)

a

parallel to

b

(D)

b

perpendicular to

c

67. If

 ^ 

a , b &c

are three non-coplanar vectors, then

( ). [ ( ) ( )]

 ^   ^  

a + b + c a + b × a + c =

(A) [ ]

 ^ 

a b c (B) 2 [ ]

 ^ 

a b c

(C) - (^) [ ^ ]

a b c (D)^0

68. If

 ^ 

a , b , c are non-coplanar unit

vectors such that,

 ^ 

a × (b ×c) =

b +c 2

then the angle between

a & b is :

(A) π 4 (B)

π 2

(C)

π

(D) π

69. Given

a = i + j^ −k

b = − i + 2 j +k

c = − i + 2 j −k. A unit vector perpen-

dicular to both

a + b &^

b + c is :

(A) i (B)

j

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

b

a

≠ λ

b

a

is not perpen. to

b

, then

r

(A)

a

b

(B)

a

b

(C)

a

×

b

a

(D)

a

×

b

b

79. A non-zero vector

a

is parallel to the line of intersection of the plane determined by the vectors,

i (^) , i (^) +j

the plane determined by the vectors, i − j (^) , i (^) + k. The angle between (^) a &

the vector

i (^) − 2 j (^) +k

is :

(A) π^

π 4

or (^4) (B)

π π or

(C) π^

π 2

or 2 (D) None of these

80. If

b & c are any two non-collinear unit vectors and

a is any vector, then

( )

( )

..

( )

 ^ ^    ^

a b b a c c a^ ^ b^ c b c

×

= ×

(A)  a (B)

b

(C)

c

(D) 0

81. The value of x for which the angle

between the vectors,

a = − 2 i + x j^ +k

and

b = x i + 2 x j +k

is acute & the

angle between

b and x^ -^ axis lies between π/2 and π satisfy : (A) x > 0 (B) x < 0 (C) x > 1 only (D) x < - 1 only

82. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is :

(A)

(B) 3

(C) 2 (D) 5

ANSWERS

1. C 2. B 3. D 4. C 5. B 6. C

7. B 8. D 9. B 10. B 11. C 12.D

13. C 14. A 15. D 16. D 17. B 18.A

19. D 20. B 21. B 22. C 23. A 24.A

25. D 26. B 27. A 28. A 29. C 30.B

31. A 32. A 33. D 34. D 35. B 36.B

37. C 38. B 39. B 40. B 41. D 42.D

43. C 44. C 45. C 46. C 47. A 48.D

49. B 50. D 51. B 52. A 53. B 54.B

55. A 56. D 57. B 58. C 59. A 60.C

61. B 62. C 63. B 64. B 65. D 66.B

67. C 68. C 69. C 70. C 71. C 72.B

73. D 74. B 75. A 76. C 77. C 78.B

79. A 80. A 81. B 82. B

www.myengg.com