






Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Este documento aborda diferentes questões sobre vetores e suas propriedades, incluindo produto escalar, produto vetorial, vetor área, unidade normal e perpendicular, além de cálculos relacionados à física e engenharia. Também são apresentados exemplos e problemas para aplicação dos conceitos.
Tipologia: Exercícios
1 / 10
Esta página não é visível na pré-visualização
Não perca as partes importantes!
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
a. b
a
b
2 (B)
a
b
2
a
b
2 (D) None of these
2. The area of a triangle whose vertices are, A (1, - 1, 2), B (2, 1, - 1) and C (3, - 1, 2) is :
(A) 13 (B) 13
(C) 6 (D) 6
3. If
a & b are two non - zero vectors,
then the component of
b along
a
is
a b a b b
a b b a a
a b b a b
a b a a a
4. If
a + b + c = 0, then which relation is correct.
(A)
a = b = c = 0
(B)
a. b = b. c =c .a
(C) ^
a × b = b × c = c ×a (D) None of these
5. If ABCDEF is a regular hexagon and
AB AC AD AE AF
→ → → → →
→ , then λ = (A) 2 (B) 3 (C) 4 (D) 6
6. If O be the circumcentre and O′ be the orthocentre of a triangle ABC, then
→ → →
→ (B) (^2) ′
→ O O
(C)
→
→ O O
7. If in the given fig.
→
a (^) ,
→
b
and AP : PB = m : n, then
→
(A) mam^ n bn
n a m b m n
(C) m
a - n
b
ma n b m n
8. If
^ a^ =^2 i^ +^2 j^ +^3 k^ , b = − i + 2 j^ +k and
c = 3 i +j^ , then
a
b is perpendicular to
c
if t = (A) 2 (B) 4 (C) 6 (D) 8
9. The area of the parallelogram whose diagonals are,
a = 3 i + j^ − 2 k
and
b = i − 3 j^ + 4 k
is :
(A) 10 3 (B) 5 3 (C) 8 (D) 4
10.
a. {(
b
c
a
b
c
a
b
c
b
c
a
a
b
c
] (D) None of these
O
A P B
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
11. If the vectors
2 i^ − 3 j
, i + j^ − k and
3 i − k form three concurrent edges of a parallelopiped, then the volume of the parallelopiped is : (A) 8 (B) 10 (C) 4 (D) 14
12. (^ )^.
a × b c = a
b
c
, if :
(A)
a
b
b
c
b
c
c
a
c
a
a
b
a
b
b
c
c
a
13. If
a
b
c
are unit vectors such that
a
b
c
= 0, then
a
b
b
c
c
a
14. If the position vectors of the points
A, B, C be
a
b
a
b
respectively then the points A, B, C are : (A) Collinear (B) Non − collinear (C) Form a right angled triangle (D) None of these
15. If
a
b
are the position vectors of A & B respectively, then the position vector of a point C on AB produced
such that
→
→ is : (A) 3
a -
b
b
a
a
b
b
a
16. The position vectors of the points A,
B & C are
i (^) +j
, j^ + k and k^ +i respectively. The vector area of the
∆ ABC = ± (^12)
α
, where
α
− i + j^ +k
(B) i − j^ +k
(C) i^ + j^ − k (D) i^ + j^ +k
17. If
a = (1, − 1, 1) &
c
then the vector
b
satisfying, a ×
b
c &
a
b
= 1, is : (A) (1, 0, 0) (B) (0, 0, 1) (C) (0, − 1, 0) (D) None of these
18. If
a ×
b
b ×^
c ≠^ 0, then for some scalar k : (A)
a
c
= k
b
a +
b
= k
c (C) b
c = k a
(D) None of these
19. P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then
→ → → →
is :
→ (B) 2 OP
→
→ (D) (^4) OP
→
20. A unit vector in the xy − plane which is perpendicular to 4 i − 3 j^ + k is :
i (^) +j 2
(B) 15 ( 3 i + 4 j)
(C) 15 ( 3 i^ − 4 j) (D) None of these
21. If the position vectors of the points
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
30. Let
b = 3 j + 4 k^ ,
a = i +j
and let
b 1 &b 2
be component vectors of
b
parallel and perpendicular to
a
. If
b 1
= 32 i^ +^32 j, then
b 2 =
(A) 32 i^ +^32 j^ +^4 k
(B) − 32 i^ + 32 j^ + 4 k
(C) − 23 i + 32 j (D) None of these
31. If the points whose position vectors
are 3 i^ − 2 j^ − k, 2 i + 3 j^ − 4 k,
− i^ + j^ + 2 k and 4 i^ + 5 j^ + λ k lie on a plane, then λ =
(A) - 14617 (B)
32. A and B are two points. The position vector of A is 6b − 2a. A point P divides the line AB in the ratio 1 : 2. If
a^ ^ −b
is the position vector of P, then the position vector of B is given by : (A) 7 a^ − 15 b (B) 7 a^ + 15 b
(C) 15 a^ −^7 b (D) 15 a^ +^7 b
33. If
a & b are unit vectors making an
angle θ with each other then
a − b is : (A) 1 (B) 0
(C) cos θ 2 (D) 2 sin
θ 2
34. If the vectors,
a i + j +k
, i + b j^ +k
and i^ + j^ + ck (a ≠ b ≠ c ≠ 1) are coplanar, then the value of, 1 1
− a +^ − b +^1 −c =
(A) - 1 (B) - (^12)
(C)
35. If C is the middle point of AB and P is any point outside AB, then :
(A)
→ → →
→ → →
→ → →
→ → →
36.
a , b , c are three non − zero, non − coplanar vectors and
p , q , r are three other vectors such that,
p (^) ^ b c a b c
q (^) ^ c a a b c
and
r (^) ^
a b a b c
, then [
p , q , r] equals
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
a. b × c (B)^ ^1 a. b ×c (C) 0 (D) None of these
37. Let
a = 2 i − j +k^ ,
b = i + 2 j −k
c = i + j^ − 2 k be three vectors. A
vector in the plane of
b & c whose
projection on
a is of magnitude
is : (A) 2 i − 3 j^ + 3 k (B) 2 i + 3 j^ + 3 k
(C) − 2 i^ − j^ + 5 k (D) 2 i^ + j^ + 5 k
38. The magnitudes of mutually
perpendicular forces
a , b & c are 2, 10 and 11 respectively. Then the magnitude of its resultant is : (A) 12 (B) 15 (C) 9 (D) None of these
39. A vector (^) a has components 2p & 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the anti-clockwise sense. If (^) a has components p + 1 & 1 w.r.t. the new system, then :
(A) p = 0 (B) p = 1 or − (^13)
(C) p = − 1 or
(D) p = 1 or − 1
40. Let the value of ,
p
= (x + 4y) a + (2x + y + 1)
b and
q
= (y − 2x + 2) a + (2x - 3y - 1)
b , where
a
b are^ non-collinear vectors. If 3
p
q , then the value of x & y, will be : (A) - 1, 2 (B) 2, - 1 (C) 1, 2 (D) 2, 1
41. If (x, y, z) ≠ (0, 0, 0) and
the value of λ will be : (A) - 2, 0 (B) 0 , - 2 (C) - 1, 0 (D) 0, - 1
42. If three non - zero are, a = a i 1 + a j 2 +a k 3 ^ ,
b = b i 1 + b j 2 ^ +b k 3
and
c = c i 1 + c j 2 +c k 3
. If
c
is the unit vector perpendicular to the vectors a & b and the angle between^
a &b
is π 6 , then
a b c
a b c
a b c
1 1 1
2 2 2
3 3 3
2
is equal to :
1
2 1
2 1 ( Σ a ) ( Σ b ) ( Σc^2 )
( Σ a 12 ) ( Σb 12 ) 4
43. The position vector of coplanar points A, B, C, D are
a , b , c &d
respectively in such a way that,
b − d c − a = 0, then the point D of the ∆ ABC is : (A) Incentre (B) Circumcentre
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
53. If
a , b , c are coplanar vectors, then
a b c
b c a
c a b
a a a b a
b a b b b
c a c b c
a c a b a
b c b b c
c c c b b
a a b c a
b a a c c
c a c c b
54. A unit vector which is coplanar to
vector, i + j^ + 2 k and i^ + 2 j^ +k and
perpendicular to i^ + j^ + k, is :
i (^) −j 2 (B)^ ±^
j^ −k
k (^) −j 2
i + j (^) +k 3
55. If
x. a = 0 ,
x. b = 0 &^
x. c= 0 for
some non - zero vector
x , then the true statement is :
a b c ≠^0
a b c = 1^ (D) None of these
56. If
a has magnitude 5 and points north-east & vector
b
has magnitude 5 & points north-west, then
a
b
is equal to : (A) 25 (B) 5
(C) 7
57. In a regular hexagon ABCDEF, AE
→
is equal to :
(A) AC AF AB
→ → →
→ → →
→ → →
→ → → →
→ → →
→ → →
→ → →
59. In a ∆ ABC, if (^2) AC
→ = 3 (^) CB
→ , then
2 OA
→
→ equals :
(A) 5 OC
→ (B) - OC
→
→ (D) None of these
60. If AO^ OB
→ →
→ →
61. If the position vectors of A and B are i (^) + 3 j (^) − 7 k and 5 i − 2 j (^) + 4 k, then
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
the direction cosine of (^) AB
→ along y - axis is :
(A) 4 162
62. The point B divides the arc AC of a quadrant of a circle in the ratio 1 : 2.
If O is the centre and (^) OA
a and
→
b , then the vector
→
is : (A)
b − 2 a (B) 2
a −b
(C) (^3 )
b − a (D)^ None of these
63. The points D, E, F divide BC, CA & AB of the triangle ABC in the ratio 1 : 4, 3 : 2 & 3 : 7 respectively & the point K divides AB in the ratio 1 : 3,
→ → →
(A) 1 : 1 (B) 2 : 5 (C) 5 : 2 (D) None of these
64. If vector
a = 2 i − 3 j + 6 k^ and vector
b = − 2 i + 2 j −k
, then
Pr Pr
ojection of vector a on vector b ojection of vector b on vector a
(^)
65. If
r
be position vector of any point on a sphere &
a &b
are respectively position vectors of the extremities of a diameter, then : (A)
r.^ (
a −b
) = 0
r. (
) = 0
(C) (
). (
r +b
) = 0
(D) (
r − a). (
r −b
) = 0
66. If
| | | | .| |
a = b c
b parallel to
c
a
parallel to
b
b
perpendicular to
c
67. If
a , b &c
are three non-coplanar vectors, then
a + b + c a + b × a + c =
(A) [ ]
a b c (B) 2 [ ]
a b c
(C) - (^) [ ^ ]
a b c (D)^0
68. If
a , b , c are non-coplanar unit
vectors such that,
a × (b ×c) =
b +c 2
then the angle between
a & b is :
(A) π 4 (B)
π 2
π
(D) π
69. Given
a = i + j^ −k
b = − i + 2 j +k
c = − i + 2 j −k. A unit vector perpen-
dicular to both
a + b &^
b + c is :
(A) i (B)
j
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
b
a
≠ λ
b
a
is not perpen. to
b
, then
r
a
b
a
b
a
b
a
a
b
b
79. A non-zero vector
a
is parallel to the line of intersection of the plane determined by the vectors,
i (^) , i (^) +j
the plane determined by the vectors, i − j (^) , i (^) + k. The angle between (^) a &
the vector
i (^) − 2 j (^) +k
is :
(A) π^
π 4
or (^4) (B)
π π or
(C) π^
π 2
or 2 (D) None of these
80. If
b & c are any two non-collinear unit vectors and
a is any vector, then
( )
( )
..
( )
a b b a c c a^ ^ b^ c b c
(A) a (B)
b
c
81. The value of x for which the angle
between the vectors,
a = − 2 i + x j^ +k
and
b = x i + 2 x j +k
is acute & the
angle between
b and x^ -^ axis lies between π/2 and π satisfy : (A) x > 0 (B) x < 0 (C) x > 1 only (D) x < - 1 only
82. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is :