




























































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Apostila - Hidraulica, Pneumatica e Mecatronica
Tipologia: Notas de estudo
Oferta por tempo limitado
Compartilhado em 26/08/2012
4.4
(5)1 documento
1 / 171
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Em oferta
Capítulo 1 - INTRODUÇÃO
A aplicação de pneumática e hidráulica em automação tem se dado de forma concreta em função das inúmeras vantagens que ambas propiciam, com ganhos consideráveis sobre outras tecnologias. São aplicadas em diversos ramos de atividades, sobretudo na indústria, cada uma com um campo de atuação bem definido. Vejamos nos quadros abaixo algumas características técnicas e comparações com outras técnicas de acionamentos. Técnicas Pneumática Hidráulica Elétrica/eletrônica Força Pequena Grande Pequena Torque Pequeno Grande Grande Movimento linear Fácil obtenção, alta velocidade
Fácil obtenção, média velocidade
Obtenção complexa
Movimento rotativo Altas rotações (50.000 rpm)
Médias rotações Médias rotações
Regulagem força e velocidade
Ruim Boa Excelente
Acúmulo e transporte de energia
Possível e fácil Possível, mas difícil
Fácil
Sensibilidade ao ambiente
Praticamente insensível
Sensível Sensível
Custo da energia Médio Alto Baixo Riscos de manuseio Baixo Médio Alto
Os sistemas hidráulicos e pneumáticos são compostos de equipamentos tais como cilindros, motores, válvulas, chaves de fim de curso, sensores, relés, sinalizadores, microcontroladores, CLP‟s, etc., inter-relacionados, a fim de que os atuadores (cilindros e motores) executem uma função pré–estabelecida, comandados pelos outros equipamentos descritos.
As vantagens e limitações dos sistemas pneumáticos são decorrentes basicamente da compressibilidade e da baixa viscosidade do ar
São empregados componentes de comando manual, por pressão piloto e elétrico, o que dá ao sistema uma flexibilidade razoável mas, ainda de custo relativamente alto.
a a
A
a2 a
a
y
São empregados componentes de comando manual, por pressão piloto e elétrico, mas em menor número, haja vista que grande parte destes são substituídos pelo CLP que, através de software executa funções de relé, temporizador, contador, chaves, etc., o que dá ao sistema uma grande flexibilidade com um custo relativamente baixo.
Circuito Elétrico
b. Quanto ao regime de trabalho:
- Fluxo contínuo: compressores de deslocamento dinâmico. - Fluxo intermitente: compressores de deslocamento positivo
Função: manter a pressão de trabalho do compressor dentro de uma faixa pré- estabelecida. Tipos:
Partida e parada automáticas do motor elétrico
Fechamento total da admissão Fechamento parcial (estrangulamento) da admissão
Descarga para a atmosfera Realimentação do ar comprimido
Podem ser de vazão constante ou variável. As bombas de deslocamento positivo podem ser: alternativas (pistões axiais) e rotativas (pistões radiais). Nas bombas alternativas o líquido recebe a ação das forças diretamente de um pistão ou êmbolo (pistão alongado) ou de uma membrana flexível (diafragma). Nas bombas rotativas, por sua vez, o líquido recebe a ação de forças provenientes de uma ou mais peças dotadas de movimento de rotação que comunicam energia de pressão provocando escoamento. Os tipos mais comuns de bombas de deslocamento positivo rotativas são a bomba de engrenagens, bomba helicoidal, de palhetas e pistão giratório. A característica principal desta classe de bombas é que uma partícula líquida em contato com o órgão que comunica a energia tem aproximadamente a mesma trajetória que a do ponto do órgão com o qual esta tem contato. As bombas alternativas, também chamadas bomba de êmbolo ou bombas recíprocas, fazem parte das bombas volumógenas, pois nelas, o líquido,pelas condições provocadas pelo deslocamento do pistão, enche espaços existentes no corpo da bomba ( câmaras ou cilindros). Em seguida, o líquido é expulso pela ação do movimento do pistão, que exerce forças na direção do próprio movimento do líquido. No curso da aspiração, o movimento do êmbolo (plunger) ou pistão tende a produzir o vácuo no interior da bomba, provocando o escoamento do líquido existente num reservatório graças à pressão aí reinante (geralmente a atmosfera) e que é superior à existente na câmara da bomba. É essa diferença de pressões que provoca a abertura de um válvula de aspiração e mantém fechada a de recalque. No curso da descarga, o êmbolo exerce forças sobre o líquido, impelindo-o para o tubo de recalque, provocando a abertura da válvula de recalque e mantendo fechada a de aspiração. Vê-se que a descarga é intermitente e que as pressões variam periodicamente em cada ciclo. Essas bombas são auto-escorvantes e podem funcionar como bombas de ar, fazendo vácuo se não houver líquido a aspirar.
As bombas de pistões radiais, oscilatórios ou rotativos de descarga variável constam de um tambor excêntrico ou rotor contendo orifícios cilíndricos onde são colocados os pistões e que gira no interior de uma caixa em torno de um pivô distribuidor fixo.
Ao girar o rotor, a força centrífuga mantém os pistões em contato com a parte cilíndrica interna da carcaça. Quando um pistão se aproxima do centro, descarrega líquido no pivô distribuidor central, e quando se afasta, forma o vácuo necessário para a aspiração. Os canais de aspiração e recalque no pivô distribuidor são independentes, operando em sincronia com o rotor. Alterando-se a excentricidade do rotor, consegue-se a variação de descarga desejada.
2.2.2.1 Princípio de funcionamento
Todas as bombas de pistões operam baseadas no princípio de que, se um pistão produz um movimento alternado dentro de um tubo, puxará o fluido num sentido e o expelirá no sentido contrário. Os dois tipos básicos são o radial e o axial , sendo que ambos apresentam modelos de deslocamentos fixos ou variável. Uma bomba de tipo radial tem os pistões dispostos radialmente num conjunto, ao passo que, nas unidades de tipo axial, os pistões estão em paralelo entre si bem como ao eixo do conjunto rotativo. Existem duas versões para este último tipo: em linha com placa inclinada e angular.
Neste tipo de bomba, o conjunto gira em um pivô estacionário por dentro de um anel ou rotor. Conforme vai girando, a força centrífuga faz com que os pistões sigam o contorno do anel, que é excêntrico em relação ao bloco de cilindros. Quando os pistões começam o movimento alternado dentro de seus furos, os pórticos localizados no pivô permitem que os pistões puxem o fluido do pórtico de entrada quando os pistões são forçados pelo contorno do anel, em direção ao pivô.
Neste modelo de bomba , o eixo e o bloco de cilindros estão alinhados. O movimento alternado dos pistões é causado por uma placa guia inclinada. O eixo movimenta o bloco de cilindros, que carrega os pistões em torno do eixo. As sapatas do pistão deslizam de encontro à placa e são fixadas a ela por uma placa da sapata. A inclinação da placa faz com que os cilindros alternem em seus furos. No ponto onde um pistão começa a retrair, ocorre um aumento de volume e conseqüentemente a criação de um vácuo, succionando o líquido que passa através de um rasgo feito no disco estacionário com um comprimento quase igual à metade de um arco. Existe uma área sólida no disco estacionário entre o entalhe de entrada e de saída, pois no momento em que o pistão se move sobre esse local, ele está inteiramente retraído. Quando o pistão começa a estender, o tambor de cilindro se move sobre o rasgo de saída do disco estacionário, e o óleo é forçado para a descarga.
Deslocamento. O deslocamento da bomba depende do furo e do curso do pistão e do número de pistões. O ângulo da placa determina o curso, que pode variar mudando o ângulo de inclinação. Na unidade de ângulo fixo, uma placa guia é estacionária na carcaça. Em uma unidade variável, é montada em um garfo, de modo que possa girar sobre pinos. Os controles diferentes podem ser unidos aos pinos para variar o fluxo da bomba de zero ao máximo. Com determinados controles, o sentido do fluxo pode ser invertido balançando um garfo após o centro. Na posição central, uma placa guia é perpendicular ao cilindro, e não há nenhum movimento do pistão, conseqüentemente nenhum óleo é bombeado.
Figura 3 - Bomba de Pistões Axiais com disco inclinado
Esta é uma variedade da bomba de pistão com placa inclinada. Neste projeto, um tambor de cilindro não gira; uma placa balança enquanto gira e ao balançar, empurra os pistões dentro e fora das câmaras em um tambor de cilindros estacionário.
Figura 4 - Bomba de Pistões Axiais com placa de balanço
Na classificação geral das bombas, as bombas rotativas foram incluídas entre as chamadas de “deslocamento positivo” ou “volumógenas”. Em contraposição às bombas rotodinâmicas (turbobombas), alguns autores as designam pelo nome de bombas rotoestáticas, ou de movimento rotatório. Seu funcionamento básico é o de qualquer bomba de deslocamento positivo exposto em bombas de destacamento positivo. Existe uma grande variedade de bombas rotativas que encontram aplicação não apenas no bombeamento convencional, mas principalmente nos sistemas de lubrificação, nos comandos, controles e transmissões hidráulicas e nos sistemas automáticos com válvulas de seqüência.
Figura 5 - Palhetas deslizantes no rotor
2.2.9.2 Bombas de palheta no estator (external vane pump)
Possuem um cilindro giratório elíptico que desloca uma palheta que é guiada por uma ranhura na carcaça da bomba. O peso próprio da palheta, auxiliado pela ação de uma mola, faz com que a palheta mantenha sempre contato com a superfície do rotor elíptico, proporcionando com o escoamento, conforme indica a Figura 6.
Figura 6 - Palhetas deslizantes no estator
2.2.9.3 Bombas de palhetas flexíveis (flexible vane pumps)
O rotor possui pás de borracha de grande flexibilidade, que, durante o movimento de rotação, se curvam, permitindo que entre cada duas delas seja conduzido um volume de líquido da boca de aspiração até a de recalque. Devem girar com baixa rotação, e a pressão que alcançam é reduzida (Figura 7). Na parte superior interna da carcaça existe um crescente para evitar o retorno do líquido ao lado da aspiração.
Figura 7 -Palhetas Flexíveis
2.2.9.4 Bombas de guia flexível (squeeze bumps ou flexible liner pumps) Um excêntrico desloca uma peça tubular (“camisa”) tendo em cima uma palheta guiada por uma ranhura fixa. A Figura 8 mostra o sentido de escoamento do líquido quando o eixo gira no sentido ante-horário.
Figura 8 - Guia flexível
2.2.9.5 Bomba peristáltica
A bomba peristáltica é também conhecida como bomba de tubo flexível (flexible tube pump). No interior de uma caixa circular , uma roda excêntrica, dotada em certos casos de dois roletes diametralmente opostos ou de três roletes, comprime um tubo de borracha muito flexível e resistente. A passagem dos rolos comprimindo o tubo determina um escoamento pulsativo do líquido contido no tubo, razão do nome “peristáltica” pelo qual é mais conhecida. Percebe-se que o líquido passa ao longo do tubo sem contato com qualquer parte da bomba. Por isso, a bomba pode ser usada para líquidos altamente corrosivos, como os ácidos