


Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Exercicios resolvidos livro Refrigeração e Ar condicionado cap.15
Tipologia: Exercícios
1 / 4
Esta página não é visível na pré-visualização
Não perca as partes importantes!
15-1. The machine room housing the compressor and condenser of a refrigerant 12 system has dimensions 5 by 4 by 3 m. Calculate the mass of the refrigerant which would have to escape into the space to cause a toxic concentration for a 2-h exposure.
Solution: Section 15-7, Refrigerant 12 exposure for 2-h has 20 % by volume to become toxic. Room volume = 5 x 4 x 3 m = 60 m
3 .
Volume of refrigerant 12. = (0.20)(60) = 12 m^2.
At atmospheric, 101.325 kPa, Table A-5. νg = 158.1254 L/kg = 0.1581254 m
3 /kg
Mass of refrigerant 12. = (12 m^2 ) / (0.1581254 m^3 /kg) = 76 kg - - - Ans.
15-2. Using data from Table 15-4 for the standard vapor-compression cycle operating with an evaporating temperature of -15 C and a condensing temperature of 30 C, calculate the mass flow rate of refrigerant per kilowatt of refrigeration and the work of compression for (a) refrigerant 22 and (b) ammonia.
Solution: Table 15-4. (a) Refrigerant 22.
Suction vapor flow per kW of refrigeration = 0.476 L/s Table A-6, at -15 C evaporating temperature νsuc = 77.68375 L/kg
mass flow rate = (0.476 L/s) / (77.68375 L/kg) = 0.0061274 kg/s - Ans.
Work of compression = (mass flow rate)(refrigerating effect) / COP = (0.0061274 kg/s)(162.8 kJ/kg) / 4. = 0.2141 kW -- - Ans.
(b) Ammonia (717).
Suction vapor flow per kW of refrigeration = 0.476 L/s Table A-3, at -15 C evaporating temperature νsuc = 508.013 L/kg
mass flow rate = (0.476 L/s) / (508.013 L/kg) = 0.00090943 kg/s - Ans.
Work of compression = (mass flow rate)(refrigerating effect) / COP = (0.00090943 kg/s)(1103.4 kJ/kg) / 4. = 0.2108 kW -- - Ans.
15-3. A 20% ethylene glycol solution in water is gradually cooled/ (a) At what temperature does crystalluzation begin? (b) If the antifreeze is cooled to -25 C, what percent will have frozen into ice?
Solution: Figure 15-1 and Figure 15-2.
(a) At point B, 20 % Ethylene Glycol Crystallization Temperature = -8.5 C
(b) If cooled to -25 C. x 1 = 0. x 2 = 0.
x x
x Percentice 1 2
1
Percent ice
Percent ice = 32 % - - - Ans.
15-4. A solution of ethylene glycol and water is to be prepared for a minimum temperature of -30 C. If the antifreeze is mixed at 15 C, what is the required specific gravity of the antifreeze solution at this temperature?
Solution: Fig. 15-1 and Fig. 15-2 at -30 C, point B concentration = 46 % glycol Figure. 15-3, at 15 C, 46 % glycol. Specific gravity based on water = 1.063 - - - Ans.
15-5. For a refrigeration capacity of 30 kW, how many liters per second of 30 % solution of ethylene glycol-water must be circulated if the antifreeze enters the liquid chiller at -5 C and leaves at -10 C?
Solution Figure 15-6. At -5 C, cp = specific heat = 3.75 kJ/kg.K At -10 C, cp = specific heat = 3.75 kJ/kg.K
q = 30 kw = w (3.75 kJ/kg.K)(-5 C - (-10 C))
w = 1.60 kg/s
Specific gravity at -7.5 C = 1.
Liters per second = (1.60 kg/s)(1 / 1.0475 kg/L) Liters per second = 1.53 L/s - - - Ans.
15-6. A manufacturer’s catalog gives the pressure drop through the tubes of a heat-exchanger as 70 kPa for a given flow rate of water at 15 C. If a 40 % ethylene glycol-water solution at -20 C flows through the heat exchanger at the same mass flow rate as the water, what will the pressure drop be? Assume turbulent flow. At 15 C the viscosity of water is 0.00116 Pa/.s.
Solution: Equation 15-3.
∆∆∆∆pa = 131 kPa - - - Ans.
15-7. Compute the convection heat-transfer coefficient for liquid flowing through a 20-mm-ID tube when the velocity is 2.5 m/s if the liquid is (a) water at 15 C, which has a viscosity of 0.00116 Pa.s and a thermal conductivity of 0.584 W/m.K; (b) 40 % solution of ethylene glycol at -20 C.
Solution: Equation 15-5.
p
k
VD c D
k h 0.023
μ
μ
(a) Water:
ρ = 0.99915 kg/L = 999.15 kg/m
3
D = 0.020 m μ = 0.00116 Pa.s k = 0.584 W/m.K cp = 4190 J/kg.K V = 2.5 m/s
0.8 0.
h 0.023
h = 6,177 W/m^2 .K - - - Ans.
(b) 40 % Solution, Ethylene Glycol at -20 C
ρ = 1.069 kg/L (Fig. 15-3) = 1069 kg/m^3 D = 0.020 m μ = 0.01884 Pa.s (Fig. 15-5) k = 0.45 W/m.K (Fig. 15-4) cp = 3450 J/kg.K (Fig. 15-6) V = 2.5 m/s
h 0.023
h = 2,188 W/m
2 .K - - - Ans.