Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Daniel Hart Eletrônica de Potência (cap 7 Solucionário), Exercícios de Eletrônica de Potência

Daniel Hart Eletrônica de Potência (cap 7 Solucionário)

Tipologia: Exercícios

2021
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 09/11/2021

RenanSF
RenanSF 🇧🇷

4.9

(27)

9 documentos

1 / 28

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
CHAPTER 7 SOLUTIONS
4/03/10
7-1)
7-2)
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
Discount

Em oferta

Pré-visualização parcial do texto

Baixe Daniel Hart Eletrônica de Potência (cap 7 Solucionário) e outras Exercícios em PDF para Eletrônica de Potência, somente na Docsity!

CHAPTER 7 SOLUTIONS

4/03/ 7-1) 7-2)

7-4) Example design

b) The currents in the converter are shown below. The winding currents are for the windings in the ideal transformer model, not the physical windings. The physical primary winding current is the sum of winding #1 and Lm currents.

The current in the physical primary winding is the sum of iL1 and iLm in the model. The physical currents in windings 2 and 3 are the same as in the model.

7-18) The input voltage vx to the filter is Vs(Ns / Np) when either switch is on, and vx is zero when both switches are off. (See Fig. 7-8.) The voltage across Lx is therefore 7-19) 7-20)

Time 3.000ms 3.004ms 3.008ms 3.012ms 3.016ms 3.020ms V(Output) AVG(V(Output)) 29.5V 30.0V 30.5V Output voltage (3.0200m,30.057) (3.0141m,29.697) (3.0041m,30.295) Time 3.000ms 3.005ms 3.010ms 3.015ms 3.020ms I(TX1:3) AVG(I(TX1:3)) -200mA 0A 200mA SEL>> (3.0200m,83.489m) Secondary current I(TX1:1) AVG(I(TX1:1)) 0A 2.0A 4.0A (3.0200m,912.072m) Primary current

Using a nonideal switch and diode produces lower values for the currents. For iLx, the maximum, minimum, and average values in PSpice are 1.446 A, 0.900 A, and 1.17 A, compared to 1.56 A, 1.01 A, and 1.28 A, respectively. However, the peak-to-peak variation in iLx in PSpice matches that of the ideal circuit (0.55 A). Time 3.60ms 3.61ms 3.62ms 3.63ms 3.64ms 3.65ms 3.66ms I(L3) -1.0A 0A 1.0A (3.6115m,539.288m) -I(L2) -2.0A 0A 2.0A (3.6287m,903.647m) (3.6114m,1.4463) I(L1) -2.0A 0A 2.0A (3.6287m,603.330m) (3.6114m,1.5068) I(Lx) 0A 2.0A SEL>> (3.6286m,900.720m) (3.6114m,1.4463)

Using Vs = 6 V as in Example 7-8, the frequency response of the open-loop system shows that the crossover frequency is approximately 16.8 kHz. The phase angle at the crossover frequency is 17°, which is much less than the desired value of at least 45°. Therefore, the system does not have the desired degree of stability.

Frequency 10Hz 100Hz 1.0KHz 10KHz 100KHz DB(V(error)) P(V(error))

  • 0 40 80 120 Phase Magnitude (dB) (16.814K,16.866) (16.814K,48.439m) 7-27) a) A frequency response of the circuit yields Vo ≈ -2.5 dB and θ ≈ 103° at 10 kHz.