Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Exercícios Resolvidos: Taxas de Juros Simples e Compostos, Exercícios de Finanças

EXERCICIOS SOBRE MATEMATICA FINANCEIRA

Tipologia: Exercícios

2019

Compartilhado em 05/11/2019

cras-sertaneja
cras-sertaneja 🇧🇷

3 documentos

1 / 5

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Exercício 1 – converter taxa mensal para taxa anual
1. Determinar a taxa anual equivalente a 2% ao mês.
RESOLUÇÃO
Para calcularmos a taxa equivalente anual de uma taxa mensal precisaremos utilizar a
seguinte fórmula de conversão
Substituindo a a taxa mensal por 0,02 poderemos calcular a taxa anual equivalente.
Assim, podemos afirmar que uma taxa de 26,82 % ao ano é equivalente a uma taxa mensal
de 2%.
Exercício 2 – taxa mensal equivalente
2- Determinar a taxa mensal equivalente a 42,5760% ao ano
RESOLUÇÃO
Para calcularmos a taxa equivalente mensal equivalente a uma taxa mensal, situação
contrária a anterior, precisaremos utilizar a seguinte fórmula de conversão:
Note que a fórmula de conversão da taxa é a mesma da situação anterior, pois envolve taxa
mensal e anual. Todavia, nos cálculos vamos teremos que fazer o cálculo inverso. Veja
como ficaria a resolução quando substituirmos a taxa anual por 0,425760:
Assim, podemos afirmar que uma taxa de 3 % ao mês é equivalente a uma taxa anual de
42,5760%.
Exercício 3 – Taxa anual equivalente a taxa diária
3- determinar a taxa anual equivalente a 0,10% ao dia
RESOLUÇÃO
Para calcularmos a taxa equivalente anual de uma taxa mensal precisaremos utilizar a
seguinte fórmula de conversão:
pf3
pf4
pf5

Pré-visualização parcial do texto

Baixe Exercícios Resolvidos: Taxas de Juros Simples e Compostos e outras Exercícios em PDF para Finanças, somente na Docsity!

Exercício 1 – converter taxa mensal para taxa anual

  1. Determinar a taxa anual equivalente a 2% ao mês. RESOLUÇÃO Para calcularmos a taxa equivalente anual de uma taxa mensal precisaremos utilizar a seguinte fórmula de conversão

Substituindo a a taxa mensal por 0,02 poderemos calcular a taxa anual equivalente.

Assim, podemos afirmar que uma taxa de 26,82 % ao ano é equivalente a uma taxa mensal de 2%.

Exercício 2 – taxa mensal equivalente

2- Determinar a taxa mensal equivalente a 42,5760% ao ano RESOLUÇÃO Para calcularmos a taxa equivalente mensal equivalente a uma taxa mensal, situação contrária a anterior, precisaremos utilizar a seguinte fórmula de conversão:

Note que a fórmula de conversão da taxa é a mesma da situação anterior, pois envolve taxa mensal e anual. Todavia, nos cálculos vamos teremos que fazer o cálculo inverso. Veja como ficaria a resolução quando substituirmos a taxa anual por 0,425760:

Assim, podemos afirmar que uma taxa de 3 % ao mês é equivalente a uma taxa anual de 42,5760%.

Exercício 3 – Taxa anual equivalente a taxa diária

3- determinar a taxa anual equivalente a 0,10% ao dia RESOLUÇÃO Para calcularmos a taxa equivalente anual de uma taxa mensal precisaremos utilizar a seguinte fórmula de conversão:

Note que estamos considerando um ano de 350 dias ( ano comercial). Substituindo a taxa diária por 0,001 e resolvendo, teremos:

Assim, podemos afirmar que uma taxa de 0,1 % ao dia é equivalente a uma taxa anual de 43,31 % se considerarmos ano de 360 dias.

Exercício 4 – taxa equivalente bimestral

4- Determinar a taxa bimestral equivalente a 36,00% em dois anos

RESOLUÇÃO No cálculo da taxa bimestral equivalente a uma taxa para dois anos teremos que usar a seguinte fórmula:

Note que ao longo de 2 anos teremos 12 bimestres, por isso o expoente da segunda parte da equação é 12.

Resolvendo para uma taxa de 36 % para dois anos, teremos:

Ou sejam uma taxa de 36% para dois anos é equivalente a uma taxa de 2.59 % ao bimestre.

Para encontrarmos a fórmula para calcular a taxa de juros compostos temos inicialmente de tomar como base a fórmula dos juros compostos, que é:

Onde,

M= Montante C= Capital aplicado i = taxa de juros n= número de períodos Temos agora que reorganizar a fórmula para encontrar a taxa de juros.

Assim,

Tendo os dados de montante, capital e tempo conseguimos através da fórmula acima encontrar a taxa de juros de um investimento.

Uma outro observação é que para encontrar a taxa de juros em percentual temos que multiplicar este resultado da fórmula por 100.

Veja então como aplicar a fórmula através de um exemplo prático de investimento de capital.

Aplicação da fórmula para calcular a taxa juros compostos

Suponha a seguinte situação:

Digamos que você tenha comprador um terreno hoje por R$ 60.000,00 e que seu planejamento seja vender ele daqui a 24 meses por R$ 90.000,00.

Qual a rentabilidade mensal (taxa de juros mensal) desse investimento?

Antes de aplicarmos a fórmula temos identificar as informações do investimento.

Temos então o seguinte fluxo de caixa:

Neste caso temos que o valor aplicado (capital) é de R$ 60.000,00, o Tempo de investimento (n) é de 24 meses, o valor a ser resgatado ao final do período de investimento (montante) é de R$ 90.000,00 e queremos encontrar a taxa de juros.

Assim temos:

M= Montante = R$ 90.000, C= Capital aplicado = R$ 60.000, i = taxa de juros =? n= número de períodos = 24 meses

Substituindo esses valores na fórmula de juros compostos para encontrar a taxa de juros, temos:

Resolvendo temos então:

Ou seja, a taxa retorno mensal será de 0,01703. Veja que não é muito comum apresentar a taxa deste forma. O melhor é transformar para uma taxa percentual.Para isso você deve multiplicar este resultado por 100, assim:

Ou seja, a taxa de juros de retorno mensal será de 1,703 % ao mês.