






Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Apostila de Física
Tipologia: Notas de estudo
Oferta por tempo limitado
Compartilhado em 09/03/2013
4.5
(2)18 documentos
1 / 11
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Em oferta
Assim, ao aproximarmos cargas elétricas de mesmo sinal, sejam positivas ou negativas, surge nas cargas elétricas uma força de natureza elétrica, que tentará fazer com que as duas cargas se afastem (Força de Repulsão). Se aproximarmos cargas elétricas de sinais contrários, surge uma força de natureza elétrica que tentará fazer com que as duas cargas se aproximem (Força de Atração).
Eletrostática estuda os fenômenos físicos produzidos por cargas elétricas que se encontram em repouso.
Carga Elétrica :
Todas as coisas que existem ao nosso redor são constituídas de moléculas, que por sua vez são constituídas de átomos. Os átomos são constituídos basicamente por três partículas elementares: prótons, elétrons e nêutrons. Carga Elétrica é a propriedade física característica dos prótons e dos elétrons. prótons → possuem carga elétrica de sinal positivo (+) Núcleo nêutrons → são formados por um próton e um por um elétron, apresentando carga elétrica nula Átomo Eletrosfera → elétrons – possuem carga elétrica de sinal negativo (-)
Chamamos de Eletrização de um Corpo o processo pelo qual podemos adicionar ou retirar carga(s) elétrica(s) de um corpo. A carga elétrica que pode ser adicionada ou retirada de um corpo será sempre o elétron, visto que ele encontra-se mais afastado do núcleo do átomo, o que “facilita” a sua transferência de um corpo para outro, quando comparado ao próton (este se encontra no núcleo do átomo, junto aos nêutrons. Para retirá-lo do núcleo, devemos “quebrar” o núcleo do átomo, o que é algo bastante complicado de se realizar na prática). Assim, de maneira simplificada, temos que a quantidade mínima de carga elétrica a ser transferida entre corpos é de um elétron , uma vez que o elétron não pode ser dividido (no Ensino Médio) sem perder suas características elétricas. Se um corpo apresenta número de prótons igual ao número de elétrons, dizemos que ele está eletricamente neutro. Se um corpo apresenta quantidades diferentes de prótons e de elétrons, dizemos que o corpo está eletrizado , sendo que isso pode ocorrer de duas formas:
São Princípios básicos que dispõe sobre o comportamento das cargas elétricas quando elas interagem entre si. Através da análise desses Princípios é que podemos entender melhor, por exemplo, como se dispõe num corpo eletrizado as cargas elétricas.
I - Cargas elétricas de mesmo sinal se repelem e de sinais contrários se atraem. Este Principio é uma conseqüência da existência de linhas de campo ou de força (conteúdo abordado mais adiante), ao redor de uma carga elétrica. Suas conseqüências estão representadas na figura abaixo:
F repulsão F
repulsão F F atração F F
II – Num sistema eletricamente isolado, a soma algébrica das suas cargas elétricas é constante. Chamamos de sistema eletricamente isolado a todo sistema onde as cargas elétricas que pertencem ao sistema não podem sair dele e cargas elétricas externas ao sistema não podem entrar. Assim, como não haverá aumento ou diminuição do número de cargas elétricas no sistema, a soma das cargas elétricas positivas e negativas será sempre uma constante. PROCESSOS DE ELETRIZAÇÃO: São os processos a serem realizados para que se consiga eletrizar um corpo, seja positivamente ou negativamente. São eles: Eletrização por Atrito: ocorre quando o atrito entre dois corpos é o agente responsável pela transferência de elétrons entre eles. Ao final desse processo, os corpos ficam eletrizados com cargas elétricas iguais (em quantidades), porém de sinais contrários (um positivo e um negativo). Para entender esse processo, imagine que um bastão de vidro será atritado com um pedaço de lã.
Se o corpo possui falta de elétrons, a Terra fornece elétrons em excesso nela para que o corpo fique eletricamente neutro.
Os corpos eletrizados por atrito e por contato ficam carregados respectivamente com cargas elétricas de sinais: a) iguais, iguais b) iguais, iguais c) contrários, contrários d) contrários, iguais
(PUC-SP) Dispõe-se de uma barra de vidro, um pano de lã e duas pequenas esferas condutoras, A e B, apoiadas em suportes isolados, todos eletricamente neutros. Atrita-se a barra de vidro com o pano de lã, a seguir coloca-se a barra de vidro em contato com a esfera A e o pano com a esfera B. Após essas operações: a) o pano de lã e a barra de vidro estarão neutros. b) o pano de lã atrairá a esfera A c) as esferas A e B continuarão neutras. d) a barra de vidro repelirá a esfera B. e) as esferas A e B se repelirão.
(UF-SE) Dois corpos A e B são eletrizados por atrito e em seguida um corpo C, inicialmente neutro, é eletrizado por contato com B. Sabendo-se que na eletrização por atrito B perdeu elétrons para A, pode-se afirmar que ao final desses processos as cargas de A, B e C são, respectivamente: a) positiva, positiva e positiva. b) positiva, negativa e positiva. c) negativa, negativa e negativa. d) negativa, positiva e positiva e) negativa, negativa e positiva.
(F.Carlos Chagas-SP) Uma esfera metálica M, positivamente eletrizada, é posta em contato com outra esfera condutora N, não-eletrizada. Durante o contato ocorre deslocamento de: a) prótons e elétrons d e M para N. b) prótons de N para M. c) prótons de M para N. d) elétrons de N para M. e) elétrons de M para N.
(FUVEST- SP) Três esferas de isopor M, N e P, estão suspensas por fios isolantes. Quando se aproxima N de P, nota- se uma repulsão entre essas duas esferas. Quando se aproxima N de M, nota-se uma atração entre essas duas esferas. Das possibilidades de sinais de carga dos corpos M, N e P propostas abaixo (I, II, III, IV e V), quais são compatíveis com as observações? I) M (+), N (+), P(-); a) I e III; II) M (-), N (-), P(+); b) II e IV; III) M (0), N (0), P(-); c) III e V; IV) M (-), N (+), P(+); d) IV e V; V) M (+), N (-), P(-). e) I e II.
(Fund. C. Chagas - BA) Uma esfera metálica condutora M, negativamente eletrizada, é posta em contato com outra esfera condutora N, não eletrizada (carga neutra). Durante o contato entre as esferas, ocorre deslocamento de: a) prótons e elétrons de M para N; d) elétrons de N para M; b) prótons de N para M; (^) e) elétrons de M para N; c) prótons de M para N; f) nêutrons de M para N e prótons de N para M.
(UFRGS) Quando um bastão eletricamente carregado atrai uma bolinha condutora A, mas repele uma bolinha condutora B, conclui- se que: a) a bolinha B não está carregada; b) ambas as bolinhas estão carregadas igualmente; c) ambas as bolinhas podem estar descarregadas; d) a bolinha B deve estar carregada positivamente; e) a bolinha A pode não estar carregada eletricamente.
Na figura abaixo, X, Y e Z são esferas metálicas e idênticas. A esfera Y está fixada em um suporte isolante e as esferas X e Z estão suspensas por fios isolantes. As esferas estão em equilíbrio eletrostático. Nessas condições, é possível afirmar que: (0,2 p)
Associe as colunas: (a) eletrização por atrito ( ) cargas elétricas de mesmo sinal se repelem e de sinais contrários (b) eletrização por indução; se atraem; (c) eletrização por contato; ( ) ocorre apenas separação entre algumas cargas elétricas do corpo; (d) princípio da eletrostática. ( ) os corpos ficam eletrizados com cargas de mesmo sinal; ( ) os corpos ficam carregados com cargas iguais, de sinais contrários ( ) num sistema eletricamente isolado, é constante a soma algébrica das cargas elétricas; ( ) pode ocorrer sem a existência de contato entre os corpos.
a) as esferas X, Y e Z possuem cargas elétricas de mesmo sinal; b) as esferas X e Y possuem cargas elétricas de sinais iguais; c) as esferas Y e Z possuem cargas elétricas de sinais iguais; d) as três esferas possuem carga elétrica nula; e) a esfera Y pode possuir carga de sinal contrário a das esferas X e Z.
Quantização da Carga Elétrica:
Vimos anteriormente que a partícula que é transferida quando eletrizamos um corpo é sempre o elétron, somente sendo possível a transferência de quantidades inteiras de elétrons entre os corpos, pois em nosso estudo momentâneo ainda não é possível realizar a divisão de um elétron (não podemos transferir de um corpo para outro apenas meio elétron, ou dois e meio elétrons). Sabemos que o elétron possui a menor carga elétrica que é encontrada na natureza. Esse valor de carga elétrica é igual, em valor absoluto (significa que devemos desconsiderar o sinal), à carga elétrica de um próton. Essas cargas são iguais em valor absoluto, constituindo a chamada carga elementar ( e ), que é a menor quantidade de carga elétrica que se pode transferir de um corpo para outro, possuindo o valor de: e = 1,6.10-19^ C Sendo n o número de elétrons em excesso ( ou em falta ) de um corpo eletrizado, sua carga elétrica, em módulo, será igual ao produto do número de elétrons em excesso (ou em falta) existentes no corpo pela carga elétrica elementar. Assim, temos: Q = n.e , onde: Q = Quantidade de Carga Elétrica ( C); n = número de elétrons em excesso ou em falta no corpo; e = carga elementar (e = 1,6.10-19^ C)
Unidade de Carga Elétrica: No Sistema Internacional de Unidades (S.I.) a unidade de carga elétrica é o coulomb , cujo o símbolo é ( C ). Submúltiplos do coulomb: São utilizados para facilitar a escrita de números muito grandes ou muito pequenos. Basicamente, ao escrever o número, troca-se o símbolo pelo seu valor, em potência de dez.
Submúltiplos Símbolo Valor (C) Mili m 10 - Micro μ 10 - Nano n 10 - Pico p 10 - PROBLEMAS:
1 – Um corpo inicialmente neutro é eletrizado com carga Q = 32 μC. Qual o número de elétrons retirados do corpo? Dado: e = 1,6.10-19^ C. DADOS: Vamos substituir o Q = n. e 32.10-6^ = n n = 32 .10-6-(-19)^ n = 20. 10-6 + 19 Q = 32 μC → Submúltiplo micro → → 1,6.10-19^ → 1,6 → ↓ e = 1,6.10-19^ C pelo seu valor. Assim: 32.10-6^ = n.(1,6.10-19) n = 20.10+13e n = ??? Q=32μC → Q=32.10-6^ C n = 2.10+14^ elétrons em falta
ATENÇÃO : para padronizarmos as nossas respostas, vamos procurar “ajeitar” os números que se apresentam na frente da potência de dez de tal maneira que o número ali apresentado seja maior do que 1 e menor do 10. Assim, se deslocarmos a vírgula para a esquerda em x casas decimais deveremos aumentar (somar) o expoente da potência de dez com x. Se deslocarmos a vírgula Y casas decimais para a direita, devemos diminuir (subtrair) o número da potência de Y. Exemplo:
Q = 255.10-7C → com os algarismos 255, conseguimos escrever o número 2,55, que é maior do que 1 e menor do que 10. Para tanto, deslocamos a vírgula duas casas para a esquerda e, portanto, devemos SOMAR dois ao expoente da potência. Assim, temos: Q = 2,55.10-7 + 2^ → Q = 2,55.10-5C
Q = 0,8798.10-9C → com os algarismos 8798, conseguimos escrever o número 8,798, que é maior do que 1 e menor do que
n = 6,25.10^18 elétrons
F = 8,1N
F = 2025N
F = 36N
Imagine uma carga elétrica Q fixada num determinado ponto do espaço. Essa carga elétrica puntiforme Q modifica de alguma forma a região que a envolve, de modo que, ao colocarmos uma carga puntiforme de prova (carga de prova significa que esta carga não está fixa a um ponto qualquer, podendo se movimentar livremente, conforme desejamos) q num ponto P desta região, será constatada a existência de uma Força F, de origem elétrica, agindo em q. Neste caso, dizemos que a carga Q origina, ao seu redor, um Campo Elétrico. Fora da região achurada, a carga Q não conse- gue mais influenciar a carga q através da ação de uma Força Elétrica.
carga Q (fixa)
carga de prova (q) d
Região de influência da carga Q sobre a carga de prova q (em três dimensões)
Com base no exposto e na análise dos fenômenos práticos observados, podemos definir: Campo Elétrico: Existe uma região de influência da carga Q, onde qualquer carga de prova q, nela colocada, estará sob a ação de uma força de origem elétrica. A essa região chamamos de Campo Elétrico. Carga Elétrica Puntiforme: é uma carga elétrica que possui dimensões muito pequenas, semelhantes à de um ponto na definição Matemática. Resumindo, são cargas elétricas muito pequenas.
CAMPO ELÉTRICO PRODUZIDO POR UMA CARGA ELÉTRICA PUNTIFORME FIXA:
Podemos calcular a intensidade do Campo Elétrico produzido por uma carga elétrica puntiforme mesclando a definição de Vetor Campo Elétrico com a Lei de Coulomb, obtendo como resultado:
E = K. Q , onde: E = Intensidade do campo Elétrico produzido pela carga puntiforme (N/C); d^2 K = Constante Eletrostática do meio onde a carga se encontra (N.m^2 /C^2 ); Q = valor da carga elétrica que está criando o campo Elétrico (C); d = Distância da carga elétrica ao ponto onde queremos saber o campo elétrico (m).
RELEMBRANDO: se o meio existente entre as cargas elétricas for o vácuo , o valor de K será: Kvácuo = 9.10^9 N.m^2 / C^2
LINHAS DE CAMPO ELÉTRICO: (ou Linhas de Força) São as linhas que envolvem as cargas elétricas. Essas linhas são invisíveis a olho nu, mas seus efeitos são percebidos com facilidade em laboratório, comprovando a sua existência. Por convenção, essas linhas saem das cargas elétricas positivas e entram nas cargas elétricas negativas. Assim, podemos representá-las graficamente da seguinte maneira: CARGAS POSITIVAS CARGAS NEGATIVAS CARGAS DE MESMO SINAL CARGAS DE SINAIS CONTRÁRIOS CAMPO UNIFORME
ATENÇÃO: No Campo Elétrico Uniforme, a distância entre as linhas de campo elétrico são todas iguais entre si e por isso esse campo Elétrico é chamado de Uniforme. Essa condição só acontece quando a distância de separação entre as placas é relativamente pequena, pois se aumentarmos um pouco a distância, as linhas se deformam, assumindo o formato apresentado para duas cargas elétricas de sinais contrários.
Analisando as figuras apresentadas acima, podemos perceber que as linhas de Campo Elétrico produzidas por uma mesma carga elétrica nunca se cruzam. É esse fenômeno que faz surgir a Força Elétrica de atração ou de repulsão entre duas cargas elétricas (Lei de Coulomb), uma vez que ao aproximarmos as cargas elétricas de mesmo sinal, por exemplo, as linhas de Campo Elétrico precisam se deformar para que continuem sem se cruzar. Para acontecer essa deformação nas linhas de campo, existe a necessidade de se fornecer Trabalho às cargas, através da aplicação de uma Força, utilizada para aproximar as cargas elétricas.
Na figura ao lado, a carga Q encontra- se fixa num ponto do espaço e q é a carga de prova, que pode ser movimentada aleatoriamente, em qualquer direção, conforme desejarmos. Conforme aumentamos a distância entre as duas cargas elétricas, a carga de prova fica submetida a uma Força Elétrica cuja intensidade é dada pela Lei de Coulomb. Assim, quanto mais afastamos as cargas elétricas, a força elétrica existente entre elas vai diminuindo de tal maneira que a partir de uma determinada distância a força fica tão reduzida que não seria mais suficiente para movimentar a carga de prova. Nesse limiar, dizemos que a carga q ainda está sob a influência da carga Q. Além desse limiar, a força elétrica percebida por q passa a ser praticamente nula, pois a distância entre elas é grande.
d
E (^) P = k
Q.q
Exercícios
No campo elétrico produzido por uma carga pontual Q = 3.10-2 C, qual é a energia potencial elétrica de uma carga q = 3.10-7 C, colocada a 12.10-2 m de Q? Considere as cargas no vácuo.
No campo produzido por uma carga pontual Q = 5.10-3 C, qual é a energia potencial elétrica de uma carga q = - 4.10-8 C, situada a 9.10-2 m de Q? Considere as cargas no vácuo.
Seja Q e q duas cargas elétricas puntiformes, separadas por uma distância d, sendo q fixa.
2,0 x 10-10^ C, positivas, no vácuo, separadas pela distância d = 0,40 m. Determine a
energia potencial elétrica do sistema. (k = 9 x 109N.m2/C2)
POTENCIAL ELÉTRICO
Para que uma carga elétrica se movimente dentro de um material condutor, ela deve receber uma determinada quantidade de Energia, assim como qualquer outro objeto ou partícula. Essa energia recebida pela carga elétrica é utilizada para que ela se movimente de um determinado ponto a outro do espaço. Se ela recebe mais energia, pode percorrer distâncias maiores e vice-versa. Essa energia elétrica fornecida à carga faz com que ela se movimente, uma vez que a carga elétrica fica submetida à ação de uma Força (também de origem elétrica, dada pela Lei de Coulomb), que irá produzir um deslocamento na carga elétrica. Assim, dizemos que essa Força, que produz deslocamento, realiza um Trabalho sobre a carga elétrica em questão. Assim, podemos definir como o Potencial Elétrico produzido por uma carga elétrica puntiforme ao Trabalho realizado pela Força Elétrica, por unidade de carga, para deslocar a carga elétrica do ponto onde ela se encontra até o infinito. O Potencial Elétrico também pode ser chamado, mais tecnicamente, de Tensão Elétrica ou ainda de Diferença de Potencial (d.d.p). No Sistema Internacional de Unidades (S.I.), a unidade do Potencial Elétrico é o volt (V). ATENÇÃO: popularmente, a Tensão Elétrica é conhecida como Voltagem****. Esse é um termo popular, não técnico/científico, e por isso não será utilizado neste material. Matematicamente, após uma pequena dedução matemática, podemos calcular o Potencial Elétrico através da equação: V = K .Q , onde: V = Potencial Elétrico (V); d K = Constante Eletrostática do meio (N.m^2 / C^2 ); Q = Carga Elétrica (C); d = Distância da carga ao ponto onde queremos saber o Potencial (m).
RELEMBRANDO: se o meio existente entre as cargas elétricas for o vácuo , o valor de K será: Kvácuo = 9.10^9 N.m^2 / C^2
PROBLEMAS:
V = 2,7.10^5 V
V = 1,35.10^8 V
V = 2,7.10^5 V
V = 3000 V