Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Karlin Taylor - Introdução a modelos estocásticos, Notas de estudo de Estatística

Livro completo

Tipologia: Notas de estudo

2018

Compartilhado em 10/04/2018

fernanda-mesquita-18
fernanda-mesquita-18 🇧🇷

4

(1)

2 documentos

1 / 646

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
An Introduction
To Stochastic
Modeling
Howard M.Taylor
Samuel Karlin
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Karlin Taylor - Introdução a modelos estocásticos e outras Notas de estudo em PDF para Estatística, somente na Docsity!

AnIntroduction

ToStochastic

Modeling

HowardM.Taylor

SamuelKarlin

AnIntroductionto

StochasticModeling

ThirdEdition

AnIntroductionto

StochasticModeling

ThirdEdition

HowardM.Taylor
StatisticalConsultant
Onancock,Viginia

SamuelKarlin

DepartmentofMathematics
StanfordUniversity
Stanford,California

O

AcademicPress SanDiego London Boston New York Sydney Tokyo^ Toronto

Thisbookisprintedonacid-freepaper.

Copyright©1998,1994,1984byAcademicPress

Allrightsreserved. Nopartofthispublicationmaybereproducedor transmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopy,recording,or anyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher. PermissionsmaybesoughtdirectlyfromElsevier'sScienceandTechnologyRightsDepartmentin Oxford,UK.Phone:(44)1865843830,Fax:(44)1865853333,c-mail:permissions@elsevier.co.uk. Youmayalsocompleteyourrequeston-lineviatheElsevierhomepage:httpJ/www.elseviercomby selecting'CustomerSupport'andthen'ObtainingPermissions'.

ACADEMICPRESS AnImprintofElsevier 525BSt.,Suite1900,SanDiego,California92101-4495,USA 1300BoylstonStreet,ChestnutHill,MA02167,USA http://www.apnet.com

AcademicPressLimited 24-28OvalRoad,LondonNW17DX,UK http://www.hbuk.co.uk/ap/

LibraryofCongressCataloging-in-PublicationData

Taylor,HowardM. Anintroductiontostochasticmodeling/HowardM.Taylor,Samuel Karlin.-3rded. p. cm.

Includesbibliographicalreferences(p. - )andindex.

ISBN-13:978-0-12-684887-8 ISBN-10:0-12-684887- 1.Stochasticprocesses. I.Karlin,Samuel. II.Title. QA274.T35 1998 003'.76--dc2l

ISBN-13: 978-0-12-684887- ISBN-10:0-12-684887-

PRINTEDINTHEUNITEDSTATESOFAMERICA

05060708IP
  • I Introduction Preface ix - 1.StochasticModeling
    • 2.ProbabilityReview
      • 3.TheMajorDiscreteDistributions
    • 4.ImportantContinuousDistributions
    • 5.SomeElementaryExercises
    • 6.UsefulFunctions,Integrals,andSums
      • Expectation II ConditionalProbabilityandConditional
      • 1.TheDiscreteCase
    • 2.TheDiceGameCraps
      • 3.RandomSums
    • 4.ConditioningonaContinuousRandomVariable
      • 5.Martingales*
  • III MarkovChains:Introduction - 1.Definitions - 2.TransitionProbabilityMatricesofaMarkovChain - 3.SomeMarkovChainModels - 4.FirstStepAnalysis - 5.SomeSpecialMarkovChains - 6.FunctionalsofRandomWalksandSuccessRuns - 7.AnotherLookatFirstStepAnalysis* vi Contents - 8.BranchingProcesses* - 9.BranchingProcessesandGeneratingFunctions*
    • IVTheLongRunBehaviorofMarkovChains - 1.RegularTransitionProbabilityMatrices - 2.Examples - 3.TheClassificationofStates - 4.TheBasicLimitTheoremofMarkovChains - 5.ReducibleMarkovChains*
      • VPoissonProcesses - 1.ThePoissonDistributionandthePoissonProcess - 2.TheLawofRareEvents - 3.DistributionsAssociatedwiththePoissonProcess - 4.TheUniformDistributionandPoissonProcesses - 5.SpatialPoissonProcesses - 6.CompoundandMarkedPoissonProcesses
    • VI ContinuousTimeMarkovChains - 1.PureBirthProcesses - 2.PureDeathProcesses - 3.BirthandDeathProcesses - Processes 4.TheLimitingBehaviorofBirthandDeath - 5.BirthandDeathProcesseswithAbsorbingStates - 6.FiniteStateContinuousTimeMarkovChains - 7.APoissonProcesswithaMarkovIntensity*
  • VII RenewalPhenomena - RelatedConcepts 1.DefinitionofaRenewalProcessand - 2.SomeExamplesofRenewalProcesses - Process 3.ThePoissonProcessViewedasaRenewal - 4.TheAsymptoticBehaviorofRenewalProcesses Contents vii - Processes 5.GeneralizationsandVariationsonRenewal - 6.DiscreteRenewalTheory*
    • VIII BrownianMotionandRelatedProcesses - 1.BrownianMotionandGaussianProcesses - 2.TheMaximumVariableandtheReflectionPrinciple - 3.VariationsandExtensions - 4.BrownianMotionwithDrift - 5.TheOrnstein-UhlenbeckProcess*
      • IX QueueingSystems - 1.QueueingProcesses
        • 2.PoissonArrivals,ExponentialServiceTimes
        • 3.GeneralServiceTimeDistributions
        • 4.VariationsandExtensions
        • 5.OpenAcyclicQueueingNetworks
        • 6.GeneralOpenNetworks
  • FurtherReading
  • AnswerstoExercises
  • Index

PrefacetotheFirstEdition

Stochasticprocessesarewaysofquantifyingthedynamicrelationshipsof sequencesofrandomevents.Stochasticmodelsplayanimportantrolein elucidatingmanyareasofthenaturalandengineeringsciences.Theycan beusedtoanalyzethevariabilityinherentinbiologicalandmedical processes,todealwithuncertaintiesaffectingmanagerialdecisionsand withthecomplexitiesofpsychologicalandsocialinteractions,andtopro- videnewperspectives,methodology,models,andintuitiontoaidinother mathematicalandstatisticalstudies. Thisbookisintendedasabeginningtextinstochasticprocessesforstu- dentsfamiliarwithelementaryprobabilitycalculus.Itsaimistobridge thegapbetweenbasicprobabilityknow-howandanintermediate-level courseinstochasticprocesses-forexample,AFirstCourseinStochastic Processes,bythepresentauthors. Theobjectivesofthisbookarethree:(1)tointroducestudentstothe standardconceptsandmethodsofstochasticmodeling;(2)toillustratethe richdiversityofapplicationsofstochasticprocessesinthesciences;and (3)toprovideexercisesintheapplicationofsimplestochasticanalysisto appropriateproblems. Thechaptersareorganizedaroundseveralprototypeclassesofsto- chasticprocessesfeaturingMarkovchainsindiscreteandcontinuous time,Poissonprocessesandrenewaltheory,theevolutionofbranching events,andqueueingmodels.AftertheconcludingChapterIX,wepro- videalistofbooksthatincorporatemoreadvanceddiscussionsofseveral ofthemodelssetforthinthistext.

instructors,hopethatstudentswouldposeandanswerforthemselvesas theyreadatext.Answerstotheexercisesaregivenattheendofthebook sothatstudentsmaygaugetheirunderstandingastheygoalong. Problemsaremoredifficult.Someinvolveextensivealgebraicorcal- culusmanipulation.Manyare"wordproblems"whereinthestudentis asked,ineffect,tomodelsomedescribedscenario.Asinformulatinga model,thefirststepinthesolutionofawordproblemisoftenasentence oftheform"Letx=...."Amanualcontainingthesolutionstotheprob- lemsisavailablefromthepublisher. Areasonablestrategyonthepartoftheteachermightbetoholdstu- dentsresponsibleforalloftheexercises,buttorequiresubmittedsolu- tionsonlytoselectedproblems.Everystudentshouldattemptarepresen- tativeselectionoftheproblemsinordertodevelophisorherabilityto carryoutstochasticmodelinginhisorherareaofinterest. Asmallnumberofproblemsarelabeled"ComputerChallenges."These callformorethanpencilandpaperfortheiranalyses,andeithersimula- tion,numericalexploration,orsymbolmanipulationmayprovehelpful. ComputerChallengesaremeanttobeopen-ended,intendedtoexplore whatconstitutesananswerintoday'sworldofcomputingpower.They mightbeappropriateaspartofanhonorsrequirement. Becauseourfocusisonstochasticmodeling,insomeinstanceswehave omittedaproofandcontentedourselveswithaprecisestatementofa resultandexamplesofitsapplication.Allsuchomittedproofsmaybe foundinAFirstCourseinStochasticProcesses,bythepresentauthors. Inthismoreadvancedtext,theambitiousstudentwillalsofindadditional materialonmartingales,Brownianmotion,andrenewalprocesses,and presentationsofseveralotherclassesofstochasticprocesses.

TotheInstructor

Ifpossible,werecommendhavingstudentsskimthefirsttwochapters,re- ferringasnecessarytotheprobabilityreviewmaterial,andstartingthe coursewithChapterIII,onMarkovchains.Aonequartercourseadapted tothejunior-seniorlevelcouldconsistofacursory(one-week)reviewof ChaptersIandII,followedinorderbyChaptersIIIthroughVI.Forinter- estedstudents,ChaptersVII,VIII,andIXdiscussothercurrentlyactive areasofstochasticmodeling.Starredsectionscontainmaterialofamore advancedorspecializednature.

Acknowledgments

Manypeoplehelpedtobringthistextintobeing.Wegratefullyacknowl- edgethehelpofAnnaKarlin,ShelleyStevens,KarenLarsen,and LaurieannShoemaker.ChapterIXwasenrichedbyaseriesoflectureson queueingnetworksgivenbyRalphDisneyatTheJohnsHopkinsUniver- sityin1982.AlanKarr,IvanJohnstone,LukeTierney,BobVanderbei, andothersbesidesourselveshavetaughtfromthetext,andwehaveprof- itedfromtheircriticisms.Finally,wearegratefulforimprovementssug- gestedbytheseveralgenerationsofstudentswhohaveusedthebookover thepastfewyearsandhavegivenustheirreactionsandsuggestions.

ChapterI

Introduction

1. StochasticModeling

Aquantitativedescriptionofanaturalphenomenoniscalledamathe- maticalmodelofthatphenomenon.Examplesabound,fromthesimple equationS=Zgt2describingthedistanceStraveledintimetbyafalling objectstartingatresttoacomplexcomputerprogramthatsimulatesa biologicalpopulationoralargeindustrialsystem. Inthefinalanalysis,amodelisjudgedusingasingle,quitepragmatic, factor,themodel'susefulness.Somemodelsareusefulasdetailedquanti- tativeprescriptionsofbehavior,asforexample,aninventorymodelthat isusedtodeterminetheoptimalnumberofunitstostock.Anothermodel inadifferentcontextmayprovideonlygeneralqualitativeinformation abouttherelationshipsamongandrelativeimportanceofseveralfactors influencinganevent.Suchamodelisusefulinanequallyimportantbut quitedifferentway.Examplesofdiversetypesofstochasticmodelsare spreadthroughoutthisbook. Suchoftenmentionedattributesasrealism,elegance,validity,and reproducibilityareimportantinevaluatingamodelonlyinsofarasthey bearonthatmodel'sultimateusefulness.Forinstance,itisbothunrealis- ticandquiteineleganttoviewthesprawlingcityofLosAngelesasageo- metricalpoint,amathematicalobjectofnosizeordimension.Yetitis quiteusefultodoexactlythatwhenusingsphericalgeometrytoderivea minimum-distancegreatcircleairroutefromNewYorkCity,another "point."

2 I Introduction

Thereisnosuchthingasthebestmodelforagivenphenomenon.The pragmaticcriterionofusefulnessoftenallowstheexistenceoftwoor moremodelsforthesameevent,butservingdistinctpurposes.Consider light.Thewaveformmodel,inwhichlightisviewedasacontinuousflow, isentirelyadequatefordesigningeyeglassandtelescopelenses.Incon- trast,forunderstandingtheimpactoflightontheretinaoftheeye,the photonmodel,whichviewslightastinydiscretebundlesofenergy,is preferred.Neithermodelsupersedestheother;botharerelevantand useful. Theword"stochastic"derivesfromtheGreed toaim,to guess)andmeans"random"or"chance."Theantonymis"sure,""deter- ministic,"or"certain."Adeterministicmodelpredictsasingleoutcome fromagivensetofcircumstances.Astochasticmodelpredictsasetof possibleoutcomesweightedbytheirlikelihoods,orprobabilities.Acoin flippedintotheairwillsurelyreturntoearthsomewhere.Whetheritlands headsortailsisrandom.Fora"fair"coinweconsiderthesealternatives equallylikelyandassigntoeachtheprobability12. However,phenomenaarenotinandofthemselvesinherentlystochas- ticordeterministic.Rather,tomodelaphenomenonasstochasticorde- terministicisthechoiceoftheobserver.Thechoicedependsontheob- server'spurpose;thecriterionforjudgingthechoiceisusefulness.Most oftentheproperchoiceisquiteclear,butcontroversialsituationsdoarise. Ifthecoinoncefallenisquicklycoveredbyabooksothattheoutcome "heads"or"tails"remainsunknown,twoparticipantsmaystillusefully employprobabilityconceptstoevaluatewhatisafairbetbetweenthem; thatis,theymayusefullyviewthecoinasrandom,eventhoughmostpeo- plewouldconsidertheoutcomenowtobefixedordeterministic.Asaless mundaneexampleoftheconversesituation,changesinthelevelofalarge populationareoftenusefullymodeleddeterministically,inspiteofthe generalagreementamongobserversthatmanychanceeventscontribute totheirfluctuations. Scientificmodelinghasthreecomponents:(i)anaturalphenomenon understudy,(ii)alogicalsystemfordeducingimplicationsaboutthephe- nomenon,and(iii)aconnectionlinkingtheelementsofthenaturalsystem understudytothelogicalsystemusedtomodelit.Ifwethinkofthese threecomponentsintermsofthegreat-circleairrouteproblem,thenat- uralsystemistheearthwithairportsatLosAngelesandNewYork;the logicalsystemisthemathematicalsubjectofsphericalgeometry;andthe

4 I Introduction

Thenextprinciple,thelongrunrelativefrequencyinterpretationof probability,isabasicbuildingblockinmodernstochasticmodeling,made preciseandjustifiedwithintheaxiomaticstructurebythelawoflarge numbers.Thislawassertsthattherelativefractionoftimesinwhichan eventoccursinasequenceofindependentsimilarexperimentsap- proaches,inthelimit,theprobabilityoftheoccurrenceoftheeventonany singletrial. Theprincipleisnotrelevantinallsituations,however.Whenthesur- geontellsapatientthathehasan80-20chanceofsurvival,thesurgeon means,mostlikely,that80percentofsimilarpatientsfacingsimilar surgerywillsurviveit.Thepatientathandisnotconcernedwiththelong run,butinvividcontrast,isvitallyconcernedonlyintheoutcomeofhis, thenext,trial. Returningtothegroupexperiment,wewillsupposenextthatthecoinis flippedintotheairand,uponlanding,isquicklycoveredsothatnoonecan seetheoutcome.WhatisPr{H}now?Severalinthegrouparguethatthe outcomeofthecoinisnolongerrandom,thatPr{H}iseither0or1,and thatalthoughwedon'tknowwhichitis,probabilitytheorydoesnotapply. Othersarticulateadifferentview,thatthedistinctionbetween"ran- dom"and"lackofknowledge"isfuzzy,atbest,andthatapersonwitha sufficientlylargecomputerandsufficientinformationaboutsuchfactors astheenergy,velocity,anddirectionusedintossingthecoincouldhave predictedtheoutcome,headsortails,withcertaintybeforethetoss. Therefore,evenbeforethecoinwasflipped,theproblemwasalackof knowledgeandnotsomeinherentrandomnessintheexperiment. Inarelatedapproach,severalpeopleinthegrouparewillingtobetwith eachother,atevenodds,ontheoutcomeofthetoss.Thatis,theyarewill- ingtousethecalculusofprobabilitytodeterminewhatisafairbet,with- outconsideringwhethertheeventunderstudyisrandomornot.Theuse- fulnesscriterionforjudgingamodelhasappeared. Whiletherestofthemobweredebating"random"versus"lackof knowledge,"onemember,Karen,lookedatthecoin.Herprobabilityfor headsisnowdifferentfromthatofeveryoneelse.Keepingthecoincov- ered,sheannouncestheoutcome"Tails,"whereuponeveryonementally assignsthevaluePr{H}=0.Butthenhercompanion,Mary,speaksup andsaysthatKarenhasahistoryofprevarication. Thelastscenarioexplainswhytherearehorseraces;differentpeople assigndifferentprobabilitiestothesameevent.Forthisreason,probabil-

  1. StochasticModeling 5

itiesusedinoddsmakingareoftencalledsubjectiveprobabilities.Then, oddsmakingformsthethirdprincipleforassigningprobabilityvaluesin modelsandforinterpretingthemintherealworld. Themodernapproachtostochasticmodelingistodivorcethedefinition ofprobabilityfromanyparticulartypeofapplication.Probabilitytheory isanaxiomaticstructure(seeSection2.8),apartofpuremathematics.Its useinmodelingstochasticphenomenaispartofthebroaderrealmofsci- enceandparallelstheuseofotherbranchesofmathematicsinmodeling deterministicphenomena. Tobeuseful,astochasticmodelmustreflectallthoseaspectsofthe phenomenonunderstudythatarerelevanttothequestionathand.Inad- dition,themodelmustbeamenabletocalculationandmustallowthede- ductionofimportantpredictionsorimplicationsaboutthephenomenon.

1.1. StochasticProcesses

AstochasticprocessisafamilyofrandomvariablesXwheretisapara- meterrunningoverasuitableindexsetT.(Whereconvenient,wewill writeX(t)insteadofX,.)Inacommonsituation,theindextcorresponds todiscreteunitsoftime,andtheindexsetisT={0,1,2,...}.Inthis case,X,mightrepresenttheoutcomesatsuccessivetossesofacoin,re- peatedresponsesofasubjectinalearningexperiment,orsuccessiveob- servationsofsomecharacteristicsofacertainpopulation.Stochastic processesforwhichT=[0,c)areparticularlyimportantinapplications. Heretoftenrepresentstime,butdifferentsituationsalsofrequentlyarise. Forexample,tmayrepresentdistancefromanarbitraryorigin,andX,may countthenumberofdefectsintheinterval(0,t]alongathread,orthe numberofcarsintheinterval(0,t]alongahighway. Stochasticprocessesaredistinguishedbytheirstatespace,ortherange ofpossiblevaluesfortherandomvariablesXbytheirindexsetT,andby thedependencerelationsamongtherandomvariablesX,.Themostwidely usedclassesofstochasticprocessesaresystematicallyandthoroughly presentedforstudyinthefollowingchapters,alongwiththemathemati- caltechniquesforcalculationandanalysisthataremostusefulwiththese processes.Theuseoftheseprocessesasmodelsistaughtbyexample. Sampleapplicationsfrommanyanddiverseareasofinterestareaninte- gralpartoftheexposition.