
































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Manual do professor com todas as respostas do livro do volume 1
Tipologia: Exercícios
Oferta por tempo limitado
Compartilhado em 05/12/2015
4.6
(213)263 documentos
1 / 72
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Em oferta
Reprodução proibida. Art.184 do Código Penal e Lei 9.610 de 19 de fevereiro de 1998.
çã o proibida. Art.184 do C ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
Reprodu
çã o proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
Desenvolver a cidadania por meio de uma mudança de hábito e/ou de postura diante dos problemas ambientais, sociais e econômicos. Ampliar as possibilidades de representações servindo-se da linguagem química, exercitan- do a representação simbólica das transformações químicas e traduzindo, para esta linguagem, os fenômenos e as transformações químicas da natureza. Desenvolver a capacidade do uso da matemática como uma ferramenta nos dados quantita- tivos químicos, tanto na construção quanto na análise e na interpretação de gráficos e tabelas.
Os capítulos contêm as seguintes partes: abertura, desenvolvimento dos conteúdos conceituais, atividades práticas/pesquisa, revisão, exercícios e leitura.
A abertura de cada capítulo visa a enfatizar as relações da Química com aspectos da socie- dade, como a tecnologia e o trabalho. A intenção é mostrar ao aluno que a Química é parte integrante de nossas vidas.
Ao longo de cada capítulo aparecem boxes (textos identificados por quadros de cor roxa) nos quais é apresentada uma das seguintes situações: aprofundamento das informações estu- dadas; relações entre os vários ramos da Ciência, como a Química, a Física, a Matemática e a Biologia; fatos da história da Ciência; temas de ecologia, ética; etc. Esses textos objetivam tornar a Ciência mais próxima da realidade do aluno. Pretendem também levar o aluno a perceber que o conhecimento científico representa um esforço da humanidade para o seu próprio desenvolvimento. Quando alguma lei científica ou alguma descoberta importante é citada, uma biografia sucinta do pesquisador responsável pelo feito é apresentada, relacionando a construção da Ciência ao trabalho humano e à época histórica em que essas contribuições foram elaboradas.
A maioria dos capítulos traz, por tópicos abordados, a seção Atividades práticas/pesquisa. São sugestões de montagens e experimentos que utilizam materiais, equipamentos e reagentes de fácil obtenção e/ou aquisição. As atividades práticas/pesquisa visam a ilustrar e a esclarecer o assunto estudado de maneira simples e segura.
Após a apresentação de cada item, ou de uma série de tópicos, tem-se a seção Revisão. Nela são abordadas questões simples, com a finalidade de chamar a atenção do aluno para os pontos e os conceitos fundamentais da teoria que acabou de ser desenvolvida.
Nesta parte, é apresentada uma série de exercícios retirados dos últimos vestibulares de todo o Brasil. Dentro de cada série estão incluídos exercícios propostos e exercícios resolvidos (estes últimos são destacados com um fundo de cor laranja), nos quais são explicitados problemas e detalhes fundamentais sobre o tópico estudado. Para facilitar o trabalho em sala de aula ou em casa, os exercícios propostos foram organizados em uma ordem crescente de dificuldade. Quando o assunto tratado for mais longo ou apresentar maior dificuldade, haverá uma série de exercícios complementares que poderão ser trabalhados em classe ou, então, como trabalho extra de aprofundamento. Há ainda, no final de cada capítulo, uma seção chamada Desafio, com uma série de ques- tões, um pouco mais difícil que as anteriores, envolvendo assuntos de capítulos anteriores.
Ao final de cada capítulo há uma leitura de cunho mais geral seguida de algumas questões simples sobre o texto, visando a fornecer aos alunos, mediante discussões e reflexões, condi- ções para que eles desenvolvam uma postura crítica em relação ao mundo em que vivem. As leituras que aparecem nos capítulos podem ser trabalhadas como tema para pesqui- sa ou sob o ponto de vista da problemática do texto. Também é importante sempre esti- mular que os alunos falem, leiam e escrevam sobre os mais variados assuntos relacionados à Química.
Reprodu
ção proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
No Ensino Fundamental, os alunos tiveram contato com vários campos do conhecimento químico por meio da disciplina de Ciências. Agora, no Ensino Médio, eles estão em condições de aprofundar, detalhar e utilizar esses conhecimentos, desenvolvendo, de forma mais ampla, capacidades como abstração, raciocínio, investigação, associação, análise e compreensão de fenômenos e fatos químicos e interpretação da própria realidade. É importante perceber que a Química é uma ciência experimental, não significando que todos os tópicos devam ser realizados experimentalmente em sala de aula, como de- monstração, ou em laboratório, mas que alguns o sejam para que o aluno compreenda o que é ciência e método científico. Os enunciados das atividades práticas propostas trazem, propositadamente, exposições sucintas para que os alunos possam trabalhar também a própria capacidade de solucionar pequenos problemas de ordem prática. Para cada uma dessas atividades, é importante alertar o aluno acerca dos perigos a que todos estão sujeitos quando trabalham com materiais tóxicos, corrosivos e/ou inflamáveis. O uso de luvas e óculos apropriados sempre deve ser recomendado. Havendo tempo hábil, é útil propor alguma pesquisa antes de se realizar a atividade prática, pesquisa esta envolvendo as pro- priedades dos produtos químicos utilizados, suas aplicações e relações com o meio ambien- te e com os seres humanos. Em alguns casos, as atividades desta seção estão diretamente relacionadas a pesquisas. Considerando a importância da interpretação de um experimento, vale a pena construir, com os alunos, um relatório da primeira atividade prática, lembrando que ele deve conter: Nome do aluno ou nomes dos alunos integrantes do grupo Data Título Introdução Objetivo Material e reagente utilizado Procedimento adotado Dados experimentais Análise dos dados experimentais (o professor pode elaborar perguntas que, por meio dos dados coletados, levem o aluno à análise desses dados) Discussão e conclusão (o professor pode inserir um fato ou uma notícia de jornal relacio- nado ao experimento realizado) Referências bibliográficas O professor poderá utilizar o relatório das atividades práticas como instrumento de avaliação. Os resultados alcançados podem ser discutidos em sala de aula, pois é importante que os alunos tenham sempre em mente que a Química é uma ciência experimental e que, algumas vezes, os resultados esperados podem não ser obtidos. É essencial a ênfase do professor para o fato de que “não existe experiência que não deu certo”. Toda experiência tem seu resultado, e cabe ao professor e ao aluno aproveitar a ocasião para explorar e discutir os fatores prováveis que levaram ao resultado não esperado, lembrando que alguns dos fatores mais comuns são: Qualidade do equipamento e do reagente utilizado. Fator humano – grau de preparo do experimentador, capacidade de observação, atitu- de em relação ao trabalho, habilidades manuais, etc. Local de trabalho – vento, umidade, temperatura, etc. Muitas vezes o ambiente domés- tico é impróprio para a realização da atividade prática. Nível de controle experimental – número de variáveis físicas e/ou químicas que podem alterar (ou “mascarar”) o resultado experimental. As atividades práticas/pesquisa podem ser desenvolvidas em grupo, em duplas ou indivi- dualmente, lembrando que o trabalho em grupo favorece a comunicação oral, a socialização e a troca de experiências.
Algumas sugestões de procedimentos e atividades que podem auxiliar o desenvolvimento do pensamento científico são apresentadas a seguir.
Reprodu
ção proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
O seminário proporciona a oportunidade do trabalho em grupo, o que favorece a discus- são e a reflexão sobre diferentes idéias a respeito de um mesmo assunto. O discurso social é essencial para mudar ou reforçar conceitos. Os resultados são significativos, em termos de aprendizagem, quando o seminário estimula a criatividade dos estudantes para a interpretação e a representação de fenômenos e/ou proprie- dades químicas por meio de situações e objetos do cotidiano. Para exemplificar, o professor pode propor e orientar, no estudo de reações de combustão em química orgânica, um seminário sobre as vantagens e as desvantagens de alguns tipos de combustíveis. Cada grupo ficará responsável por um tipo de combustível, por exemplo: gás natural veicular, gasolina, diesel , álcool.
Levar para a classe um fato ocorrido e noticiado nos meios de comunicação (jornal, revista, rádio, TV, internet) é sempre muito eficaz ao ensino e à aprendizagem da Química, pois favore- ce situações nas quais os alunos poderão interpretar, analisar e associar os tópicos aprendidos com os fatos noticiados, além de, muitas vezes, estimular a postura crítica do aluno. A seguir, veja um exemplo que pode ser empregado na abordagem de deslocamento do equilíbrio químico. Algumas cópias da notícia em questão podem ser distribuídas entre grupos de alunos ou, então, o professor pode ler a notícia para a classe.
Dissolução no mar de gás carbônico da queima de combustíveis fósseis será nocivo a seres marinhos, como corais
Nos próximos séculos, os humanos poderão ver os oceanos em seu estado mais ácido nas últimas centenas de milhões de anos. Causado pela queima de combustíveis fósseis, como car- vão e derivados de petróleo, o aumento agudo de acidez seria trágico para muitas formas de vida marinha. Um estudo feito pela equipe do pesquisador americano Ken Caldeira, do Laboratório Nacio- nal Lawrence Livermore, na Califórnia (EUA), aponta o gás carbônico como o principal respon- sável pela tragédia. Ele também é o vilão do problema conhecido como efeito estufa (aqueci- mento da atmosfera pela retenção de radiação solar sob um cobertor de gases, agravado pela atividade humana). A queima dos combustíveis fósseis aumenta a quantidade de gás carbônico no ar. Parte desse gás se dissolve no oceano e aumenta a acidez da água. Isso prejudica o desenvolvimento de organismos marinhos, como formas de plâncton, corais e outros animais, e a formação de esqueletos e conchas de carbonato de cálcio, essencial para essas formas de vida, fica dificulta- da com o ambiente ácido. ”Até hoje, a absorção de gás carbônico pelo mar sempre foi considerada uma coisa boa, já que ela tirava esse gás do ar e diminuía fenômenos como o efeito estufa. Tinha até gente querendo injetar gás carbônico de usinas e fábricas diretamente no mar”, disse à Folha Caldei- ra, 47, em entrevista por telefone. “Agora nós vemos que não é bem assim.” Marinho, Marcus Vinicius. Folha de S.Paulo , Folha Ciência, São Paulo, 25 set. 2003.
Deve-se fazer o aluno perceber os trechos da notícia que estão relacionados com a Química e, então, lançar um desafio a ele: pedir que procure a explicação química de como o aumento do gás carbônico dissolvido no oceano dificulta a formação de esqueletos e conchas de carbonato de cálcio. Após a discussão sobre as possíveis razões químicas para esse fato, pode-se concluir com toda a classe que uma das explicações poderia ser dada pelo deslocamento do equilíbrio químico. Com o aumento de CO 2 na água, o equilíbrio CO2(g) H 2 O (^) (l) H 2 CO3(aq) é deslocado para a direita, ou seja, há a formação de H 2 CO 3 , aumentando assim a concentração de ácido carbônico no oceano. Com o aumento da concentração de H 2 CO 3 , o equilíbrio H 2 CO3(aq) CaCO3(s) Ca(HCO 3 )2(aq) também é deslocado para a direita, no sentido do aumento de concentração de Ca(HCO 3 ) 2 , aumentando então a dissolução do carbonato de cálcio e comprometendo assim a formação de esqueletos e conchas calcárias.
Reprodu
çã o proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
Elaborar projetos
Um projeto, desde que bem planejado e estruturado, é uma ferramenta importantíssima no ensino e na aprendizagem da Química, pois desperta no aluno a curiosidade, a capacidade investigativa e associativa, assim como o interesse pela Ciência e, além disso, pode levar o aluno e a comunidade a mudanças de postura diante da problemática abordada, estimulando e desenvolvendo a cidadania. Para elaborar um projeto, é essencial, primeiramente, justificar a necessidade dele. Depois, é importante traçar como esse projeto será implementado, o que abrange: a escolha do públi- co-alvo, dos professores envolvidos, a definição de quantidade de horas semanais necessárias para a consecução dele, a definição da duração do projeto e como o trabalho dos alunos e/ou da comunidade poderá ser divulgado por ele. Além disso, um projeto deve ter muito bem definido os objetivos a serem atingidos, as metodologias utilizadas, os recursos necessários, os conteúdos abordados, como será a ava- liação dos alunos no projeto e a avaliação do projeto pelos alunos e, por fim, a bibliografia utilizada. Um tema interessante e abrangente que pode ser trabalhado é o lixo, e a justificativa da escolha desse tema pode ser, entre outras, o aumento da produção de lixo nas cidades brasilei- ras, tornando-se cada vez mais importante analisar as condições que regem a produção desses resíduos, incluindo sua minimização na origem, seu manejo e as condições existentes de trata- mento e disposição dos resíduos em cada cidade brasileira. O público-alvo pode ser, por exemplo, os alunos da 1.a^ série do Ensino Médio e a comuni- dade. Os professores envolvidos podem ser das mais variadas disciplinas, como, por exemplo: Química, Biologia, Física, Geografia, História e Artes. Dependendo da disponibilidade dos alunos e dos professores, o projeto pode ter uma duração de dois a quatro meses. A implementação pode ser feita com reuniões semanais, com duração de mais ou menos três horas, podendo utilizar e-mail para avisos e trocas de idéias; os professores que participarão do projeto devem preparar atividades, orientar os alunos na pesquisa, nos experimentos e nas discussões, além de auxiliar na organização dos dados coletados para a elaboração de um trabalho final (como a criação de uma canção, de uma peça teatral, um pôster, uma maquete ou alguma montagem de imagens) que poderá ser apresentado, por exemplo, na feira de Ciências da escola. Os objetivos de um projeto cujo tema seja o lixo podem ser vários. A seguir serão exemplificados alguns.
Definir e classificar os resíduos sólidos quanto aos potenciais riscos de contaminação do meio ambiente e quanto à natureza ou à origem do resíduo. Conhecer os impactos ambientais provocados pelo lançamento sem controle de resíduos sólidos no meio ambiente urbano. Conhecer as técnicas e/ou os processos de tratamento (lixão, compostagem, aterro sanitário, incineração, plasma, pirólise) e desinfecção (desinfecção química, desinfecção térmica – autoclave e microondas, e radiação ionizante) mais adequados a cada tipo de resíduo sólido, a fim de reduzir ou eliminar os danos ao meio ambiente. Analisar as condições relacionadas ao controle da produção dos resíduos, incluindo a minimização desses resíduos na origem, o manejo deles, além do tratamento e da dis- posição dos resíduos na cidade de São Paulo. Conscientizar o futuro cidadão da importância da participação dele na preservação do meio ambiente. Podem-se utilizar, como metodologias, o trabalho em grupo, a exposição em classe, o trabalho experimental em laboratório e o debate. Os recursos auxiliares a esse projeto podem ser: o uso de um laboratório, o uso da internet, uma visita ao lixão da cidade ou a uma usina de compostagem, quando a cidade possuir uma. Os conteúdos a serem abordados em um tema como esse podem ser os resíduos sólidos (produção e destino; classificação; características; doenças provocadas; serviços de limpeza pública; tratamento: compostagem, aterro sanitário, incineração, plasma, pirólise, desinfec- ção química, desinfecção térmica – autoclave e microondas, e radiação ionizante; disposição final dos resíduos provenientes do tratamento; resíduos sólidos; geração de energia) e a legislação ambiental.
Reprodu
çã o proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
Rubricas normalmente possuem o formato de tabelas e apresentam os critérios de qualida- de ou de aprendizagem. Nelas deve constar o que é importante na aprendizagem, como, por exemplo, os critérios de correção bem definidos. Devem descrever os diferentes níveis de exce- lência do trabalho – excelente, satisfatório e insatisfatório ou calouro, aprendiz, profissional e mestre ou, então, números, estrelas etc. – e as dificuldades concretas que podem ser vivenciadas pelos alunos durante a aprendizagem. Devem conter, ainda, algumas habilidades de pensa- mento/raciocínio. Veja um modelo de rubrica a seguir.
Os passos necessários para a elaboração de uma rubrica são: Identificar as várias dimensões potenciais e os componentes cognitivos e procedimentais a avaliar (se necessário, divida a tarefa em subtarefas que evidenciem as habilidades necessárias ou a compreensão/aplicação do conhecimento). Esse é o passo mais impor- tante, pois quando definidas cuidadosamente as dimensões a serem avaliadas, as ex- pectativas ficam mais claras e a avaliação é mais útil e formativa. Selecionar um número razoável de aspectos importantes. Questione os aspectos mais importantes da tarefa proposta e classifique as principais dimensões a avaliar, da mais importante para a menos significativa. Elimine as dimensões que ficarem no final de sua lista, até determinar as quatro mais importantes (ou o número que entenda ser mais adequado). Escreva os aspectos selecionados na coluna da esquerda da rubrica-modelo, um em cada linha. Descrever os critérios de referência para todos os níveis de cada aspecto. Imagine um exemplo máximo de desempenho para cada um dos aspectos a observar. Descreva-o sucinta e claramente nas colunas da rubrica. Imagine, depois, um exemplo de qualida- de ligeiramente inferior e preencha a coluna seguinte (este preenchimento será da direi- ta para a esquerda) e assim por diante, até ter todas as células da rubrica preenchidas. Dispor os diferentes aspectos pela ordem em que provavelmente serão observados ou por uma seqüência lógica de orientação para os alunos. Se preferir, reduza os níveis de desempenho para três ou aumente-os para cinco. Você também pode personalizar os títulos da rubrica (calouro, aprendiz, etc.) ou adaptá-los ao tema da sua atividade. Revisar a rubrica no momento da sua efetiva utilização e alterá-la, se necessário. Mais informações sobre rubricas podem ser obtidas no site : http://abweb.no.sapo.pt/material/rubricas/criarubr.htm. Acesso em: 17 abr. 2005.
Auto-avaliar-se
Outro recurso importante é a auto-avaliação, pois cada estudante tem modos distintos e consistentes de percepção, organização e retenção do assunto. A auto-avaliação pode incluir questões do tipo:
Como você se sente em relação a seus estudos de Química? Por quê? Qual foi o assunto mais importante para você e o que aprendeu? Em que você gostaria de ser ajudado? Como você acha que o professor pode melhorar as aulas de Química? A auto-avaliação, além de ser uma maneira de o estudante exercitar a reflexão sobre o pró- prio processo de aprendizagem, serve, em especial, de indicador e alerta para auxiliar o professor em sua atuação em sala de aula.
Identificação da dimensão ou do aspecto a ser avaliado
Descrição dos critérios obser- váveis que evi- denciam um ní- vel de desempe- nho típico de um principiante.
Descrição dos critérios observá- veis que já refli- tam um trabalho um pouco mais elaborado, mas que ainda pode ser aperfeiçoado.
Descrição dos critérios obser- váveis que cor- respondam a um nível satisfatório de desempenho.
Descrição de cri- térios visíveis que ilustrem o nível máximo de desempenho ou de traços de ex- celência.
Total
Calouro Aprendiz Profissional Mestre Pontos
Reprodu
ção proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
ALVES, R_. Filosofia da ciência: introdução ao jogo e suas regras_. São Paulo, Brasiliense, 1981. AMBROGI, A.; LISBOA, J. C. F.; SPARAN, E. R. F. Química: habilitação para o magistério. São Paulo, Funbec/Cecisp, Harbra, 1990. Módulos 1, 2 e 3. —————; —————; VERSOLATO, E. F. Unidades modulares de química. São Paulo, Hamburg,
BACHELARD, G. A formação do espírito científico. 1. ed. Rio de Janeiro, Contraponto, 1996. BRADY, J. E.; Humiston, G. E. Química geral. 2. ed. Rio de Janeiro, LTC, 1986. v. 1. BRANCO, S. M. Água: origem, usos e preservação. São Paulo, Moderna, 1993. (Coleção Po- lêmica.) BRONOWSKY, J. Ciências e valores humanos. Belo Horizonte/São Paulo, Itatiaia/Edusp, 1979. CAMPOS, M. C.; NIGRO, R. G. Didática de Ciências: o ensino-aprendizagem como investigação. São Paulo, FTD, 1999. CANTO, E. L. Plástico: bem supérfluo ou mal necessário? São Paulo, Moderna, 1997. CARRARO, G. Agrotóxico e meio ambiente: uma proposta de ensino de Ciências e Química , UFRGS, AEQ, 1997. (Série Química e meio ambiente.) CHAGAS, A. P. Argilas: as essências da terra. 1. ed. São Paulo, Moderna, 1996. (Coleção Polêmica.) —————. Como se faz Química? Campinas Ed. da Unicamp, 1989. CHALMERS, A. F. A fabricação da ciência. São Paulo, Ed. da Unesp, 1994. —————. O que é ciência afinal? 2. ed. São Paulo, Brasiliense, 1993. CHASSOT, A. I. A educação no ensino da Química. Ijuí, Ed. Unijuí, 1990. —————; OLIVEIRA, R. J. (org.). Ciência, ética e cultura na educação. São Leopoldo, Ed. da Unisinos, 1998. CHRÉTIEN, C. A ciência em ação. Campinas, Papirus, 1994. CHRISPINO, Á. Manual de Química experimental. São Paulo, Ática, 1991. —————. O que é Química. São Paulo, Brasiliense, 1989. (Coleção Primeiros passos.) CISCATO, C. A. M. Extração de pigmentos vegetais. Revista de Ensino de Ciências , Funbec, 1988. v. 20. —————; BELTRAN, N. O. Química: parte integrante do projeto de diretrizes gerais para o ensi- no de 2º grau – núcleo comum (convênio MEC/PUC-SP). São Paulo, Cortez e Autores Associados, 1991. CRUZ, R. Experimentos de química em microescala. São Paulo, Scipione, 1995. 3 vols. FELLENBERG, G. Introdução aos problemas da poluição ambiental. São Paulo, Ed. da Universidade de São Paulo, 1980. FLACH, S. E. A Química e suas aplicações. Florianópolis, Ed. da UFSC, 1987. FREIRE, P. Pedagogia da esperança: um reencontro com a pedagogia do oprimido. Rio de Janeiro, Paz e Terra, 1992. —————. Pedagogia do oprimido. Rio de Janeiro, Paz e Terra, 1987. —————. Educação como prática para a liberdade. Rio de Janeiro, Paz e Terra, 1989. FUNDAÇÃO ROBERTO MARINHO. Telecurso 2000: Ciências – 1. grauo. São Paulo, Globo, 1996. GEPEQ – Grupo de Pesquisa para o Ensino de Química. Interação e transformação: Química para o 2 o. grau. São Paulo, Ed. da Universidade de São Paulo, 1993-1995-1998. v. I, II e III; livro do aluno, guia do professor. GIL-PERÉZ, D.; CARVALHO, A. M. P. de. Formação de professores de Ciências: tendências e inova- ções. São Paulo, Cortez, 1995. v. 26. (Coleção Questões da nova época.) GOLDEMBERG, J. Energia nuclear: vale a pena? São Paulo, Scipione, 1991. (Coleção O Universo da Ciência.) GRIIN, M. Ética e educação ambiental. Campinas/Rio de Janeiro, Papirus/Paz e Terra, 2000. HAMBURGUER, E. W. (org.). O desafio de ensinar ciências no século 21. São Paulo, Edusp/Estação Ciência, 2000. IMBERNÓN, F. Formação docente e profissional: formar-se para a mudança e a incerteza. São Paulo, Cortez, 2000. v. 77. (Coleção Questões da nossa época.) JARDIM, N. S. et al. Lixo municipal: manual de gerenciamento integrado. São Paulo, Instituto de Pesquisas Tecnológicas, 1995.
Reprodu
ção proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
SCHNETZLER, R. P. O professor de ciências: problemas e tendências de sua formação. Campinas, R. Vieira Gráfica e Editora, 2000. —————; ARAGÃO, R. Ensino de ciências: fundamentos e abordagens. Campinas, R. Vieira Grá- fica e Editora, 2000. ————— et al. PROQUIM: projeto de ensino de Química para o segundo grau. Campinas, CA- PES/MEC/PADCT, 1986. SHRINER – FUSON – CURTIN – MORRI. Identificação sistemática dos compostos orgânicos. Rio de Janeiro, Guanabara, 1983. SILVA-SÁNCHEZ, S. S. Cidadania ambiental: novos direitos no Brasil. São Paulo, Humanitas, 2000. SNEDDEN, R. (trad. de CHAMPLIN, D.). Energia. São Paulo, Moderna, 1996. (Coleção Polêmica
VIEIRA, L. Química, saúde & medicamentos. UFRGS, AEQ, 1997. VOGEL, A. Análise orgânica qualitativa. In Química orgânica. Rio de Janeiro, Ao Livro Técnico e Científico, 1980. v. 1, 2 e 3. VYGOTSKY, L. S. A formação social da mente. 48. ed. São Paulo, Martins Fontes, 1991. —————. Pensamento e linguagem. 18. ed. São Paulo, Martins Fontes, 1993. WEISSMANN, H. (org.). Didática das ciências naturais: contribuições e reflexões. Porto Alegre, Artmed, 1998. ZAGO, O. G.; DEL PINO, J. C. Trabalhando a Química dos sabões e detergentes. UFRGS, AEQ,
CHASSOT, A. A ciência através dos tempos. São Paulo, Moderna, 1994. FERRI, M. G.; MOTOYAMA, S. História das Ciências no Brasil. São Paulo, EPU/EDUSP, 1979. GOLDFARB, A. M. A. Da alquimia à Química. São Paulo, Nova Stella/EDUSP, 1987. MATHIAS, S. Evolução da Química no Brasil. In FERRI & MOTOYAMA. História das ciências no Brasil. São Paulo, EPU/EDUSP, 1979. VANIN, J. A. Alquimistas e químicos. São Paulo, Moderna, 1994.
BRASIL. Ministério da Educação – MEC, Secretaria de Educação Média e Tecnológica – Semtec. Parâmetros Curriculares Nacionais: Ensino Médio. Brasília: MEC/Semtec, 2002. BRASIL. Ministério da Educação – MEC, Secretaria de Educação Média e Tecnológica – Semtec. PCN + Ensino Médio: orientações educacionais complementares aos Parâmetros Curriculares Nacionais – Ciências da Natureza, Matemática e suas Tecnologias. Brasília: MEC/ Semtec, 2002. BRASIL. Ministério da Educação – MEC/Instituto Nacional de Estudos e Pesquisas Educacio- nais – INEP. Matrizes Curriculares de Referência para o SAEB. 2. ed. Brasília: MEC/INEP, 1999. BRASIL. Ministério do Meio Ambiente – Educação para um futuro sustentável: uma visão transdisciplinar para uma ação compartilhada. Brasília, Ibama, 1999. SECRETARIA DA EDUCAÇÃO DO ESTADO DE SÃO PAULO. Ciências, ciclo básico. São Paulo, Coordenadoria de Estudos e Normas Pedagógicas/Secretaria da Educação, 1993. (Coleção Prá- tica pedagógica.)
Ciência Hoje Química Nova Química Nova na Escola American Chemical Society Education in Chemistry Enseñanza de las Ciencias International Journal of Science Education Journal of Chemical Education
Reprodu
çã o proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
A Internet, nome dado à rede mundial de computadores, permite o acesso a um número enorme de informações, dos mais variados tipos. Se bem usada, ela é um auxiliar poderoso do processo ensino-aprendizagem. Damos a seguir uma pequena lista de sites (endereços) que mais interessam ao objetivo do nosso curso. Para facilitar o trabalho dos leitores, dividimos a lista em seis tópicos:
- AllChemy Web http://allchemy.iq.usp.br Sistema informático interativo especializado em Química e ciências afins. A AllChemy cumpre as funções de revista eletrônica, banco de dados, catálogo de anúncios e classificados, correio eletrônico e fórum para grupos de discussão. - Alô Escola! – TV Cultura http://www.tvcultura.com.br/aloescola/ TV Cultura – A TV CULTURA exibe recursos educativos para professores e estudantes. - Atividades experimentais http://nautilus.fis.uc.pt/softc/programas/Welcome.html Este site português traz alguns programas interessantes para downloads gratuitos nas áreas de Química, Física, Matemática e sistemas multidisciplinares. - Bússola Escolar http://www.bussolaescolar.com.br Facilita a vida de estudantes e professores ou mesmo de quem quer se manter atualizado. A indexação de assuntos é uma das melhores do gênero. - ChemKeys http://www.chemkeys.com/bra/index.htm Este site contém materiais didáticos e textos de referência para o ensino da Química e ciências afins. - Escola do Futuro http://www.futuro.usp.br/ Laboratório interdisciplinar que investiga como as novas tecnologias de comunicação podem melhorar o aprendizado em todos os níveis de ensino. - Escolanet http://www.escolanet.com.br Site organizacional que possui material de apoio a pesquisas e trabalhos escolares. - Estação Ciência da Universidade http://www.eciencia.usp.br/site_2005/default.html de São Paulo Centro de Difusão Científica, Tecnológica e Cultural da Pró-Reitoria de Cultura e Extensão Universitária da USP. - Grupo de Pesquisa em Educação http://gepeq.iq.usp.br/ Química (GEPEQ) do Instituto O site disponibiliza atividades para professores e alunos, oferece material de Química da Universidade de apoio para pesquisas em livros, revistas, vídeos, associações e na de São Paulo Internet, cursos de formação continuada para professores de Química do Ensino Médio e questões atualizadas e interativas para testar e aprofundar seus conhecimentos. - International Union of Pure http://www.iupac.org/ and Applied Chemistry (IUPAC) Site oficial da IUPAC.
Reprodu
çã o proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
- Greenpeace — Brasil http://www.greenpeace.org.br Entidade sem fins lucrativos que atua internacionalmente. Contém assuntos relacionados ao meio ambiente. **- Ministério do Meio Ambiente (MMA) http://www.mma.gov.br/
- Agência Nacional http://www.aneel.gov.br/ de Energia Elétrica (ANEEL) Contém base de dados catalográficos, artigos de periódicos (jornais e do Ministério de Minas e Energia revistas), atos legislativos, livros e materiais especiais (CD’s, fitas cassetes de áudio e vídeo e mapas) sobre assuntos relacionados à energia elétrica e recursos hídricos. **- Base de Dados Tropicais http://www.bdt.org.br
- Companhia de Tecnologia http://www.cetesb.sp.gov.br/ de Saneamento Ambiental (Cetesb) Site da agência do Governo do Estado de São Paulo responsável pelo controle, fiscalização, monitoramento e licenciamento de atividades geradoras de poluição, com a preocupação fundamental de preservar e recuperar a qualidade das águas, do ar e do solo. - FIOCRUZ http://www.fiocruz.br A Fundação Oswaldo Cruz (FIOCRUZ), vinculada ao Ministério da Saúde do Brasil, desenvolve ações na área da ciência e tecnologia em saúde, incluindo atividades de pesquisa básica e aplicada, ensino, assistência hospitalar e ambulatorial de referência, formulação de estratégias de saúde pública, informação e difusão, formação de recursos humanos, produção de vacinas, medicamentos, kits de diagnósticos e reagentes, controle de qualidade e desenvolvimento de tecnologias para a saúde. - Petrobras http://www2.petrobras.com.br/portugues/index.asp Site da Companhia de Petróleo Brasileiro S.A. (PETROBRAS)
**- Cadê http://www.cade.com.br
Reprodu
ção proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
Ao final do capítulo, o aluno deve estar preparado para:
Conteúdos Objetivos específicos
Ao final do capítulo, o aluno deve estar preparado para:
Conteúdos Objetivos específicos
Conteúdos Objetivos específicos Ao final do capítulo, o aluno deve estar preparado para:
Reprodu
ção proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
Conteúdos Objetivos específicos Ao final do capítulo, o aluno deve estar preparado para:
Conteúdos Objetivos específicos Ao final do capítulo, o aluno deve estar preparado para:
Conteúdos Objetivos específicos Ao final do capítulo, o aluno deve estar preparado para:
Reprodu
çã o proibida. Art.184 do C
ódigo Penal e Lei 9.610 de 19 de fevereiro de 1998.
Conteúdos Objetivos específicos Ao final do capítulo, o aluno deve estar preparado para:
Conteúdos Objetivos específicos Ao final do capítulo, o aluno deve estar preparado para:
Conteúdos Objetivos específicos Ao final do capítulo, o aluno deve estar preparado para: