




Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Apostilas sobre a história dos antibióticos e descobertas relacionadas, as características gerais, dose.
Tipologia: Notas de estudo
1 / 8
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Introdução
Os antibióticos são produtos de enorme importância não apenas na área de saúde, como também na economia, visto que apenas nos Estados Unidos, cerca de 100.000 toneladas são produzidas anualmente. Embora aproximadamente 8000 substâncias com atividade antimicrobiana sejam conhecidas e, a cada ano, centenas de novas substâncias sejam descobertas, pouquíssimas são efetivamente aproveitadas e utilizadas como agentes antimicrobianos, visto que muitas destas não atendem aos requisitos mínimos para seu emprego terapêutico. Paralelamente, não podemos deixar de mencionar o crescente problema em relação ao surgimento de espécies bacterianas resistentes aos diferentes antibióticos. Este talvez corresponda ao principal desafio dos pesquisadores, visto que a multirresistência vem se tornando diariamente mais disseminada nas populações microbianas, sejam patogênicas ou não. Mais recentemente, outro aspecto que vem sendo cada vez mais levado em consideração refere-se à ocorrência dos biofilmes e sua importância na terapêutica antimicrobiana, pois o conhecimento sobre a ocorrência de biofilmes microbianos em nosso organismo levou a uma quebra do paradigma de tratamento das doenças infecciosas. Certamente, para que os antibióticos possam ser empregados de forma mais eficaz, será necessário um maior conhecimento acerca dos biofilmes formados naturalmente em nosso organismo. Pois, somente a partir da elucidação da ecologia dos biofilmes naturais do homem, teremos maiores chances de tratar de forma adequada as várias doenças infecciosas.
Conceitos
Histórico dos antibióticos e descobertas relacionadas
Paul Ehrlich (1854 - 1915): Desenvolveu o conceito de toxicidade seletiva, indicando que determinado agente exibia uma ação danosa aos microrganismos, sem afetar as células do hospedeiro. Tal conceito tem importante reflexo prático, pois indica se um agente pode, teoricamente, ser útil no tratamento de doenças infecciosas. Este pesquisador trabalhava com corantes e técnicas de coloração de microrganismos, quando verificou que alguns compostos coravam os microrganismos, mas não os tecidos animais. Esperava encontrar um corante tóxico aos microrganismos ("bala mágica").
1904 - Uso prático do vermelho de tripan, composto ativo contra o tripanossoma que causava a doença africana do sono.
Ehrlich & Hata: realização de testes com compostos arsenicais, em coelhos com sífilis. Descobriram que o composto 606, arsfenamida, era ativo => Em 1910, foi lançado o medicamento Salvarsan (nome comercial da arsfenamida), para o tratamento da sífilis.
1927 - Na I. G. Farbenindustrie (Bayer) - G. Domagk: testava corantes e outros compostos químicos, quanto à ação em microrganismos e toxicidade em animais.
1935 - Vermelho Prontosil: inócuo para animais, protegendo camundongos contra estafilococos e estreptococos patogênicos. Neste mesmo ano, foi descoberto que o prontosil era clivado no organismo, originando a sulfanilamida como um dos produtos. Na realidade, a droga eficaz era a sulfanilamida.
1939 - Nobel para Domagk
1896 - E. Duchesne: descobriu a penicilina, mas raramente tal pesquisador é citado, pois seus achados nunca foram devidamente publicados ou notificados, sendo esquecids durante vários anos.
A) Dose terapêutica: concentração p/ tratamento
B) Dose tóxica: concentração a partir da qual é tóxica
Drogas que atuem sobre funções microbianas inexistentes em eucariotos geralmente tem maior toxicidade seletiva e índice terapêutico (Penicilina).
[pic]
Exemplos de diferentes drogas antimicrobianas, classificadas de acordo com o espectro de ação.
(Adaptado de Madigan et al., Brock Biology of Microorganisms, 2003)
Microbiana - geralmente por uma ou poucas bactérias (actinomicetos) e vários tipos de fungos filamentosos. Geralmente correspondem a produtos do metabolismo secundário.
Química - Sulfonamidas, Trimetoprim, Cloranfenicol, Isoniazida além de outros antivirais e antiprotozoários.
Semi-sintéticos - são antibióticos naturais, modificados pela adição de grupamentos químicos, tornando-os menos suscetíveis à inativação pelos microrganismos (ampicilina, carbencilina, meticilina).
Os "cidas" podem ser "státicos" dependendo da concentração, ou do tipo de organismo.
Os "staticos" tem sua ação vinculada à resistência do hospedeiro.
A droga "cida" geralmente elimina o agente em concentrações de 2 a 4 vezes maior que a "stática", sendo o inverso falso.
Mecanismos de ação dos antimicrobianos
Vários são os possíveis alvos para os agentes antimicrobianos. O conhecimento dos mecanismos de ação destes agentes permite entender sua natureza e o grau de toxicidade seletiva de cada droga.
[pic]
Exemplos das principais estruturas ou etapas metabólicas afetadas por antibióticos
(Adaptado de Madigan et al., Brock Biology of Microorganisms, 2003)
penicilinas, ampicilina e cefalosporinas: contém em sua estrutura um anel β-lactâmico, que interage com proteínas denominadas PBPs (Penicillin Binding Protein), inibindo a enzima envolvida na transpeptidação, responsável pela ligação entre as cadeias de tetrapeptídeos do peptideoglicano. Com isso, há o impedimento da formação das ligações entre os tetrapeptídeos de cadeias adjacentes de peptideoglicano, ocasionando uma perda na rigidez da parede celular. Acredita-se também que tais drogas podem atuar promovendo a ativação de enzimas autolíticas, resultando na degradação da parede.
[pic]
Mecanismo de ação dos antibióticos β-lactâmicos
(Adaptado de Atlas, R.M., Principles of Microbiology, 1997)
bacitracina: Interfere com a ação do carreador lipídico que transporta os precursores da parede pela mebrana. Resulta na não formação das ligações entre o NAM e NAG.
vancomicina: liga-se diretamente à porção tetrapeptídica do peptideoglicano. É ainda a droga de escolha para linhagens resistentes de S. aureus.
cloranfenicol: Liga-se à subunidade ribossomal 50S e inibe a ligação do tRNA e da peptidil transferase, inibindo a elongação.
eritromicina: Liga-se à subunidade ribossomal 50S e inibe a elongação.
[pic]
Exemplos de drogas que interferem com a síntese protéica
(Adaptado de Atlas, R.M., Principles of Microbiology, 1997)
Sulfas e derivados: inibição da síntese do ácido fólico, pela competição com o PABA.
Trimetoprim: bloqueio da síntese do tetrahidrofolato, inibindo a dihidrofolato redutase.
[pic]
Similaridade estrutural entre a sulfanilamida e o PABA (importante precursor da síntese de purinas)
(Adaptado de Atlas, R.M., Principles of Microbiology, 1997)
Isoniazida: afeta o metabolismo do NAD ou piridoxal, inibe a síntese do ácido micólico - "fator corda".
Resistência microbiana
Este tema tornou-se um motivo de preocupação crescente entre os profissionais da área de saúde, pois a cada ano observamos o aumento de linhagens resistentes aos mais diversos agentes antimicrobianos.
|[pic] |[pic] |
|Proporção de bactérias fecais, isoladas de indivíduos normais, |Aumento na proporção de linhagens de N. gonorrhoaea resistentes|
|resistentes aos diferentes antibióticos. |à penicilina. |
|(Adaptado de Madigan et al., Brock Biology of Microorganisms, 2003) |
A resistência microbiana aos antimicrobianos pode ser de dois tipos:
Dentre os principais mecanismos de resistência podemos citar:
Impermeabilidade à droga: Muitas bactérias Gram negativas são resistentes à penicilina G por serem impermeáveis à droga, ou por apresentarem alterações em proteínas de ligação à penicilina. No caso das sulfonamidas, o microrganismo pode também apresentar uma menor permeabilidade à droga.
Inativação: muitas drogas são inativadas por enzimas codificadas pelos microrganismos. Por exemplo, a penicilinase (β-lactamase) é uma enzima que cliva o anel β-lactâmico inativando a droga. Outras drogas podem ser inativadas em decorrência de modificações introduzidas pelo microrganismo, tais como a adição de grupamentos químicos. Assim, muitos microrganismos são capazes de promover a fosforilação ou acetilação de antibióticos.
Modificação de enzima ou estrutura alvo: Por exemplo, alterações na molécula do rRNA 23S (no caso de resistência à eritromicina e cloranfenicol), alteração da enzima, no caso de drogas que atuam no metabolismo, ou uso de vias metabólicas alternativas.
Bombeamento para o meio: Efluxo da droga - No caso da resistência às tetraciclinas, em bactérias entéricas.