




























































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Todo o livro resolvido de Cálculo de Tom M Apostol, volume 2
Tipologia: Exercícios
1 / 142
Esta página não é visível na pré-visualização
Não perca as partes importantes!
ERNEST YEUNG - PRAHA 10, ˇCESK `A REPUBLIKA
Recall the following:
Definition 1 (Linear Space.). Let V be a nonempty set of objects. Linear space if a set V that satisfies the following ten axioms.
(1) (closure under addition) ∀x, y ∈ V, x + y ∈ V (2) (closure under scalar multiplication) ∀x ∈ V, αx ∈ V (3) (Additive commutativity) ∀x, y ∈ V, x + y = y + x (4) (Additive Associativity) ∀x, y ∈ V, (x + y) + z = x + (y + z) (5) (Additive Identity Existence) ∃ 0 ∈ V such that x + 0 = x, ∀x ∈ V (6) (Additive Inverse Existence) ∃(−1)x such that x + (−1)x = 0 (7) (Scalar Associativity) ∀x ∈ V, ∀α, β ∈ R or α, β ∈ C (αβ)x = α(βx) (8) (distributivity for addition in V ) ∀x, y ∈ V ; ∀a ∈ R or ∀a ∈ C, a(x + y) = ax + ay (9) (distributivity for addition of numbers) ∀x ∈ V, ∀a, b ∈ R or ∀a, b ∈ C, (a + b)x = ax + bx (10) (Multiplicative identity existence) ∀x ∈ V, 1 x = x
Exercise 1. Consider x = pq , y = rs ∈ V where p, q, r, s are polynomials. ps + rq, qs are polynomials as well.
x + y =
p q
r s
ps + rq qs
α ∈ R, αp is a polynomial
αx = αp q
x + y =
ps + rq qs
rq + ps qs = r + p
(x + y) + z =
p q
r s
t v
p q
r s
t v
= x + (y + z)
x + 0 = p q
q
p q
= x so
q
∈ V if q 6 = 0
x + (−1)x = p q
p q
q
(αβ)x = (αβ)p q
α(βp) q
= α(βx) (follows from associativity of real or complex numbers)
α(x + y) = αx + αy and (α + β)x = αx + βx follows from distributivity for real numbers
Consider x =
p q
q q
p q
= (1)x,
q q
Exercise 3. All f with f (0) = f (1)
f (0) + g(0) = (f + g)(0) = f (1) + g(1) = (f + g)(1)
af (0) = (af )(0) = af (1) = (af )(1)
f (x) + g(x) = (f + g)(x) = g(x) + f (x) = (g + f )(x)
(f (x) + g(x)) + h(x) = ((f + g) + h)(x) = f (x) + (g(x) + h(x)) = (f + (g + h))(x)
0(x) = 0 (f + 0)(x) = f (x) + 0(x) = f (x)
(−1)f (x) = (−f )(x) (f + (−1)f )(x) = (f − f )(x) = f (x) + (−1)f (x) = 0 = 0(x)
(αβ)f (x) = α(βf (x)) = α(βf )(x)
a(f + g)(x) = a(f (x) + g(x)) = af (x) + ag(x) = (af + ag)(x)
(a + b)f (x) = af (x) + bf (x) = (af )(x) + (bf )(x) = (af + bf )(x)
(1f )(x) = f (x) Exercise 4. All f with 2 f (0) = f (1)
2(f + g)(0) = 2f (0) + 2g(0) = f (1) + g(1) = (f + g)(1)
2(αf )(0) = 2αf (0) = αf (1) = (αf )(1) f + g = g + f, (f + g) + h = f + (g + h) follow from properties of the reals. 20(0) = 0 = 0(1); (f + 0)(x) = f (x) + 0 = f (x) (f + (−f ))(x) = f (x) + −f (x) = 0 (αβ)f (x) = α(βf (x)) a(f + g)(x) = (af )(x) + (ag)(x), (a + b)f (x) = af (x) + bf (x) follow from properties of the reals. 1 x = x Exercise 5. All f with f (1) = 1 + f (0)
f (1) + g(1) = (f + g)(1) = 1 + f (0) + 1 + g(0) = 2 + (f + g)(0)
So closure under addition is violated. Exercise 6. All step functions defined on [0, 1].
Exercise 8. Even functions, f (−x) = f (x).
(f + g)(−x) = f (−x) + g(−x) = f (x) + g(x) (αf )(−x) = αf (−x) = αf (x) = (αf )(x) (f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x) (follows from commutativity of real numbers) ((f + g) + h)(−x) = (f + g)(−x) + h(−x) = f (x) + g(x) + h(x) = f (x) + (g + h)(x) = (f + (g + h))(x) (follows from associativity of real numbers) if 0(−x) = 0(x) = 0 ∀x ∈ D so 0 exists and (f + 0)(x) = f (x) + 0(x) = f (x) (−f )(−x) = −f (−x) = −f (x) so (f + −f )(x) = f (x) − f (x) = 0(x) α(βf )(−x) = α(β(f (−x))) = α(βf (x)) = α(βf )(x) ((αβ)f )(−x) = (αβ)f (−x) = (αβ)f (x) = ((αβ)f )(x) (from associativity of the real numbers) α(f + g)(x) = α(f (x) + g(x)) = (αf )(x) + (αg)(x) = (αf + αg)(x) (α + β)f (x) = αf (x) + βf (x) = (αf )(x) + (βf )(x) = (αf + βf )(x) 1 f (x) = 1(f (x)) = f (x)
Exercise 22. All vectors (x, y, z) in V 3 with z = 0.
This space is closed under addition and scalar multiplication since
(x 1 , y 1 , 0) + (x 2 , y 2 , 0) = (x 1 + x 2 , y 1 + y 2 , 0) k(x, y, 0) = (kx, ky, 0)
both belong to this space.
Additive commutativity, additive associativity, scalar associativity, distributivity in addition in V , and distributivity in addition of numbers are satisfied automatically, since all vectors in this subset belong to V 3 , a linear space. (0, 0 , 0) belongs to this space, since z = 0, so existence of an additive identity is fulfilled.
′′(−1)x′′ (^) = 1 x ∈^ R
′′
(ab)x = xab^ = (xb)a^ = a(bx)
a“ ·′′^ (x“ +′′^ y) = a“ ·′′^ (xy) = (xy)a^ = xaya^ = (a“ · x)“ +′′^ (a“ ·′′^ y)
(a + b)“ ·′′^ x = xa+b^ = xaxb^ = xa“ +′′^ xb^ = a“ ·′′^ x“ +′′^ b“ ·′′^ x
1“ ·′′^ x = x^1 = x This is indeed a linear space. Exercise 30.
(1) From Axiom 5,6, the Additive Identity Existence and Additive Inverse Existence, that ∃ 0 ∈ V s.t. x + 0 = x, ∀ x ∈ V and ∃ (−1)x s.t. x + (−1)x = 0, then, using associativity, commutativity, and distributivity for addition of numbers, x + 0 = x = x + (x + (−1)x) = 2x + (−1)x = (2 + (−1))x = 1x (2) If Ax.6 is replaced by Ax.6’, ∀ x ∈ V, ∃ y ∈ V s.t. x + y = 0, x + 0 = x = x + (x + y) = 2x + y = x So Ax.10 does not hold since 2 x + y = x.
Exercise 31.
(1) (x 1 , x 2 ) + (y 1 , y 2 ) = (x 1 + y 1 , x 2 + y 2 ) a(x 1 , x 2 ) = (ax 1 , 0). Not a linear space: violates Additive Inverse existence, which demands ∃ (−1)x s.t. x + (−1)x = 0, not ∃ y s.t. x + y = 0, so that for (−1)x = (−x 1 , 0), (x 1 , x 2 ) + (−1)x = (0, x 2 ) 6 = 0 and Multiplicative identity existence, since 1 x = (x 1 , 0) 6 = x. (2) (x, 1 , x 2 ) + (y 1 , y 2 ) = (x 1 + y 1 , 0) a(x 1 , x 2 ) = (ax 1 , ax 2 ) Not a linear space: violates distributivity in addition of numbers, because (a + b)x = ((a + b)x 1 , (a + b)x 2 ) but ax + bx = (ax 1 + bx 1 , 0) (3) (x, 1 , x 2 ) + (y 1 , y 2 ) = (x 1 , x 2 + y 2 ) a(x 1 , x 2 ) = (ax 1 , ax 2 ) Not a linear space because it violates Additive Commutativity of elements. (x 1 , x 2 ) + (y 1 , y 2 ) = (x 1 , x 2 + y 2 ) but (y 1 , y 2 ) + (x 1 , x 2 ) = (y 1 , x 2 + y 2 ) (4) (x, 1 , x 2 ) + (y 1 , y 2 ) = (|x 1 + y 1 |, |y 1 + y 2 |) a(x 1 , x 2 ) = (|ax 1 |, |ax 2 |) Not a linear linear space because it violates Distributivity for addition of numbers: (a + b)(x 1 , x 2 ) = (|(a + b)x 1 |, |(a + b)x 2 |) ax + bx = (|ax 1 |, |ax 2 |) + (|bx 1 |, |bx 2 |) but |(a + b)x 1 | ≤ |ax 1 | + |bx 1 | in general
Exercise 32. Theorem 1.3.
(1) 0 x = 0 (2) a0 = 0 (3) (−a)x = −(ax) = a(−x) (4) If ax = 0, then either a = 0 or x = 0 (5) If ax = ay and a 6 = 0, then x = y (6) If ax = bx and x 6 = 0, then a = b (7) −(x + y) = (−x) + (−y) = −x − y (8) x + x = 2x, x + x + x = 3x,
∑n j=1 x^ =^ nx
Part (d), or part 4, is proven by considering this: If ax = 0, then if a = 0 and x = 0, done. If a 6 = 0, ax + a0 = a(x + 0) = 0 since a is a real number, ∃ (^1) a ∈ R s.t.
a
a = 1
=⇒ 1(x + 0) = x + 0 = x =
a
If x 6 = 0, suppose a 6 = 0. 1 a
ax = 1x = x =
a
But 0 is unique. Contradiction. So a = 0 and that’s okay, since by part (a) or part (1) of Thm. 1.3., 0 x = 0.
For part (e), or part 5, if ax = ay, a 6 = 0, then subtract ay from both sides to get ax − ay = 0 = a(x − y) = 0. Use distributivity to get ax − ay = a(x − y) = 0. Since a 6 = 0, then from part (d) or part 4, x − y = 0 must be true. Then −y = −x or, multiplying both sides by − 1 , y = x.
For part (f), or part 6, if ax = ay, subtract bx from both sides and use distributivity to get ax − bx = (a − b)x = 0. Since x 6 = 0, then by part (d), or part 4, a − b = 0. Add b to both sides to get a = b.
For part (g), or part 7, note that from the existence of an additive inverse, x + −x = 0. Consider x + (−1)x = 0. x = 1x by the existence of a multiplicative identity, and so using distributivity, 1 x + (−1)x = (1 + −1)x = 0x = 0. Then (−1)x is also an additive inverse for all x ∈ V. But additive inverses are unique, by theorem, so (−1)x = −x. Using that and distributivity, we get (−x) + (−y) = (−1)x + (−1)y = (−1)(x + y) = −(x + y). −x − y = −(x + y) because x + y + −(x + y) = 0 = x − x + y − y = x + y − x − y, where we used additive commutativity at the last step. Then subtract x + y from both sides to get −x − y = −(x + y).
For part (h), or part 8, use the existence of a multiplicative identity and distributivity to get x + x = 1x + 1x = (1 + 1)x = 2x. Now, we’ll use induction. Assume the nth case, that
∑n j=1 x^ =^ nx. Consider
∑n+ j=1 x.^
∑n+ j=1 x^ =^
∑n j=1 x^ +^ x^ =^ nx^ +^ x^ =^ nx^ + 1x^ = (n^ + 1)x. Done.
1.10 EXERCISES - SUBSPACES OF A LINEAR SPACE, DEPENDENT AND INDEPENDENT SETS IN A LINEAR SPACE, BASES AND DIMENSION, COMPONENTS
Exercise 1. x = 0 (0, y 1 , z 1 ) + (0, y 2 , z 2 ) = (0, y 1 + y 2 , z 1 + z 2 ) ∈ S k(0, y, z) = (0, ky, kz) ∈ S
Yes, S is a subspace. (0, y, z) = y(0, 1 , 0) + z(0, 0 , 1) ∈ S 0 = y(0, 1 , 0) + z(0, 0 , 1) =⇒ z = 0 y = 0 dimS = 2 Exercise 2. x + y = 0
(x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 + y 1 + y 2 = 0 + 0 = 0
k(x, y, z) ∈ S since kx + ky = k(x + y) = 0
Yes, S is a subspace. (x, y, z) = (x, −x, z) = x(1, − 1 , 0) + z(0, 0 , 1) 0 = x(1, − 1 , 0) + z(0, 0 , 1) =⇒ z = 0, x = 0 dimS = 2 Exercise 3. x + y + z = 0
(x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 + y 1 + y 2 + z 1 + z 2 = 0 + 0 = 0
k(x, y, z) ∈ S since k(x + y + z) = kx + ky + kz = 0
Yes, S is a subspace. (x, y, −(x + y)) = x(1, 0 , −1) + y(0, 1 , −1) 0 = x(1, 0 , −1) + y(0, 1 , −1) =⇒ x = 0, y = 0 dimS = 2 Exercise 4. x = y (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 = y + 1 + y + 2
k(x, y, z) ∈ S since kx = ky
Yes, S is a subspace. (x, y, z) = (x, x, z) = x(1, 1 , 0) + z(0, 0 , 1) 0 = x(1, 1 , 0) + z(0, 0 , 1) =⇒ x = 0, z = 0 dimS = 2 Exercise 5. x = y = z (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 = y + 1 + y + 2 = z 1 + z 2
k(x, y, z) ∈ S since kx = ky = kz
Exercise 12. f ′(0) = 0
(f + g)′^ = f ′^ + g′^ =⇒ (f + g)′(0) = f ′(0) + g′(0) = 0 (kf )′^ = kf ′^ =⇒ kf ′(0) = 0
Yes S is a subspace.
f =
∑^ n
j=
aj xj
f ′^ =
∑^ n
j=
jaj xj−^1
f ′(0) = 0 =⇒ a 1 = 0
f = a 0 +
∑^ n
j=
aj xj
0 = a 0 +
∑^ n
j=
aj xj^ =⇒ aj = 0, j = 0, 2 , 3 ,... n
dimS = n Note that for the last step, we could’ve sited the fact that a subset of an independent set, such as the {tk} basis for Pn, is an independent set, by definition, and so if that subset spans S, this subset will be a basis for S. Exercise 13. f ′′(0) = 0
(f + g)′′^ = f ′′^ + g′′^ =⇒ (f + g)′′(0) = f ′′(0) + g′′(0) = 0 (kf )′′^ = kf ′′^ =⇒ kf ′′(0) = 0
Yes S is a subspace.
f ′′^ =
∑^ n
j=
j(j − 1)aj xj−^2 =⇒ f = a 0 + a 1 x +
∑^ n
j=
aj xj
f ′′(0) = a 2 = 0
Then f is a linear combination of { 1 , x, x^3 , x^4 ,... , xn}, dimS = n Exercise 14. f (0) + f ′(0) = 0
f + g + f ′^ + g′^ = (f + g) + (f + g)′^ =⇒ (f + g)(0) + (f + g)′(0) = 0 + 0 = 0 kf + (kf )′^ = k(f + f ′) =⇒ kf (0) + (kf )′(0) = k(f (0) + f ′(0)) = 0
Yes S is a subspace.
f + f ′^ =
∑^ n
j=
aj xj^ +
∑^ n
j=
jaj xj−^1
(f + f ′)(0) = a 0 + a 1 = 0 =⇒ a 0 = −a 1
f = a 0 (1 − x) +
∑^ n
j=
aj xj
If f = 0, aj = 0 for j = 2, 3 ,... n, by taking j = 2, 3 ,... n derivatives. a 0 = 0 for f (0) = 0. Thus { 1 − x, x^2 , x^3 ,... , xn} is independent and span S and thus form a basis. dimS = n Exercise 15. f (0) = f (1)
(f + g)(0) = f (0) + g(0) + f (1) + g(1) = (f + g)(1) kf (0) = kf (1)
Yes S is a subspace.
f =
∑^ n
j=
aj xj
f (0) = a 0 = f (1) = a 0 +
∑^ n
j=
aj
∑^ n
j=
aj = 0 or a 1 = −
∑^ n
j=
aj
=⇒ f = a 0 +
∑^ n
j=
aj (xj^ − x)
By differentiating f ′^ = (a 0 )′^ + a 2 (2x − 1) + a 3 (3x^2 − 1)... f ′′^ = a 2 (2) + a 3 x
f ′′^ =
∑^ n
j=
aj (jxj−^2 ) = 0 if f = 0
Then {xj−^2 } is a subset of a basis for Pn. aj = 0 for j = 2,... n. Then a 0 = 0. Thus, { 1 , xj^ − x} is independent and spans S. Then { 1 , xj^ − x} forms a basis for S.
dimS = n Exercise 16. f (0) = f (2)
f (0) + g(0) = (f + g)(0) = f (2) + g(2) = (f + g)(2) kf (0) = kf (2)
Yes S is a subspace.
f =
∑^ n
j=
aj xj
f (0) = a 0 = a 0 +
∑^ n
j=
aj 2 j^ =⇒ 2 a 1 +
∑^ n
j=
2 j^ aj = 0 or a 1 = −
∑^ n
j=
2 j−^1 aj
=⇒ f = a 0 +
∑^ n
j=
aj (xj^ − 2 j−^1 x)
f ′′^ =
∑^ n
j=
aj j(j − 1)xj−^2 and f ′′^ = 0 if f = 0
BS 1 = { 1 , x,... , xn−^2 } is a subset of the basis { 1 , x,... , xn} = BPn for Pn. Then BS 1 is independent, and so aj = 0 for j = 2,... n. Then for f = 0, a 0 = 0. Thus { 1 , x^2 − 2 x, x^3 − 22 x,... , xj^ − 2 j−^1 x,... , xn^ − 2 n−^1 x} is independent and spans S and thus forms a basis for S. dimS = n Exercise 17. f is even. f (−x) = f (x)
(f + g)(−x) = f (−x) + g(−x) = f (x) + g(x) = (f + g)(x) kf (−x) = kf (x)
Yes S is a subspace.
f (−x) =
∑^ n
j=
aj xj^ (−1)j^ = f (x) =
∑^ n
j=
aj xj^ =⇒
∑^ n
j=
aj xj^ ((−1)j^ − 1) = 0
n (^2) n (^) −+ 1 1 if^ n^ is even, is the number of possibly nonzero coefficients for^ f^. 2 + 1 =^
n+ 2 if^ n^ is odd, is the number of possibly nonzero coefficients for^ f^.
Then n 2 or n− 2 1 , if n is even, or n is odd, respectively, are the number of needed elements for a subset from the basis BPn to span f and form a basis for S. Exercise 18. f is odd. f (−x) = f (x)
(f + g)(−x) = f (−x) + g(−x) = −f (x) − g(x) = −(f + g)(x) kf (−x) = −kf (x)
Yes S is a subspace.
f (−x) =
∑^ n
j=
aj xj^ (−1)j^ = −f (x) = −
∑^ n
j=
aj xj^ =⇒
∑^ n
j=
aj xj^ ((−1)j^ + 1) = 0
n (^2) n (^) +1if^ n^ = 2K^ is even, is the number of possibly nonzero coefficients for^ f^. 2 =^
n+ 2 if^ n^ = 2K^ −^1 is odd, is the number of possibly nonzero coefficients for^ f^.
Then n 2 or n+1 2 , if n is even, or n is odd, respectively, are the number of needed elements for a subset from the basis BPn to span f and form a basis for S. Exercise 19. f has degree ≤ k, where k < n or f = 0
(5) If x 1 , x 2 ∈ S
T , then
x 1 ∈ S
x 2 ∈ S
x 1 ∈ T
x 2 ∈ T
. Since S, T are subspaces, x 1 + x 2 , cx 1 ∈ S
x 1 + x 2 , cx 1 ∈ T
Then x 1 + x 2 , cx 1 ∈ S
T. So S
T is a subspace. (6) Consider x ∈ L(S
x =
aj xj ; where xj ∈ S
Since ∀ xj ∈ S, then x ∈ L(S). Since ∀ xj ∈ T , then x ∈ L(T ). Thus x ∈ L(S)
(7) Example of when L(S
Suppose S = {x 1 , x 2 }, T = {x 3 } and x 1 + x 2 = x 3. S
T ) = ∅, but L(S)
L(T ) = {kx 3 |k ∈ R} = L(T )
Exercise 23.
(1) { 1 , eax, ebx}, a 6 = b
a 0 + a 1 eax^ + a 2 ebx^ = 0 dxd −−→ a 1 aeax^ + a 2 bebx^ = 0 or a 1 a = −a 2 be(b−a)x Since x arbitrary, a 1 = a 2 = 0. =⇒ { 1 , eax, ebx} independent. dimS = 3 (2) {eax, xeax} a 1 eax^ + a 2 xeax^ = 0 or a 1 = −a 2 x x arbitrary, so a 1 = a 2 = 0. {eax, xeax} independent. dimS = 2 (3) { 1 , eax, xeax}
a 0 + a 1 eax^ + a 2 xeax^ = 0 dxd −−→ aa 1 eax^ + a 2 eax^ + a 2 axeax^ = 0 aa 1 + a 2 + a 2 ax = 0 or a 2 ax = −(aa 1 + a 2 ) x arbitrary, so a 2 = 0, a 1 = 0
Then a 0 = 0 and so { 1 , eax, xeax} independent. dimS = 3 (4) {eax, xeax, x^2 eax}. a 0 eax^ + a 1 xeax^ + a 2 x^2 eax^ = 0 = a 0 + a 1 x + a 2 x^2 1 , x, x^2 are a subset of independent BPn and so 1 , x, x^2 are independent =⇒ a 0 = a 1 = a 2 = 0 , and so {eax, xeax, x^2 eax} independent. dimS = 3. (5) {ex, e−x, cosh x} cosh x = e
x+e−x 2 dependent.^ dimS^ = 2 (6) {cos x, sin x} a cos x + b sin x = 0 or b sin x = −a cos x If cos x = 0, then sin x = 1, so b = 0. Otherwise, b tan x = −a. But x arbitrary =⇒ a = 0, b = 0 So {cos x, sin x} independent. dimS = 2 (7) a cos^2 x + b sin^2 x = 0, so then if cos^2 x 6 = 0, we have b tan^2 x = −a. Since x is arbitrary, a = b = 0. Then {cos^2 x, sin^2 x} independent. dimS = 2 (8) { 1 , cos 2x, sin^2 x} cos 2x = 1 − 2 sin^2 x So the set is dependent. dimS = 2 , since { 1 , sin^2 x} independent ({cos^2 x, sin^2 x} were independent and 1 = cos^2 x + sin^2 x). (9) {sin x, sin 2x} a sin x + b sin 2x = sin x(a + b2 cos x) = 0 If sin x, cos x 6 = 0, a + b2 cos x = 0 or 2 b cos x = −a. Since x is arbitrary, a = b = 0 So then {sin x, sin 2x} is independent. dimS = 2 (10) {ex^ cos x, e−x^ sin x} aex^ cos x + be−x^ sin x = 0 or b tan x = −ae^2 x Since x arbitrary, a = b = 0. dimS = 2
Exercise 24.
(1) Consider BS , basis for S and BV basis for V. |BV | = n finite. If S is infinite-dimensional, then ∃ xn+1 ∈ BS s.t. xn+1 ∈ B/ V since BV finite. Then ∃ xn+1 ∈ S s.t. xn+1 ∈/ V. But S ⊆ V =⇒ S is finite-dimensional.
Consider BS = {x 1 ,... , xm} and BV = {y 1 ,... , yn}. ∀ xj , xj ∈ V , since S ⊆ V. Suppose m > n. Then BS linearly dependent, by Thm. 12.10 of Vol.1 (a.k.a. Thm. 1.7 of Vol. 2). This contradicts the fact that BS is an independent basis. =⇒ dimS ≤ dimV (2) If S = V , then by Thm. 12.10 of Vol.1, BS must also contain exactly n vectors, since it’s a basis for V = S.
If dimS = dimV , then since BS is a set of n linearly independent elements, it forms a basis for V. Then ∀ y ∈ V , y ∈ L(BS ) = S. V ⊆ S =⇒ V = S. (3) Use Thm. 12.10 of Vol.1 (a.k.a. Thm. 1.7 of Vol.2): Any set of linear independent elements is a subset of some basis for V. (4) Consider BV = {y 1 ,... , yn} Suppose {y 1 + y 2 , y 1 − y 2 } = BS y 1 + y 2 , y 1 − y 2 ∈ B/ V because if they were, they’d make BV dependent.
2.4 EXERCISES - LINEAR TRANSFORMATIONS AND MATRICES, NULL SPACE AND RANGE, NULLITY AND RANK
Exercise 1. T (x, y) = (y, x)
T (a(x 1 , x 2 )+b(y 1 , y 2 )) = T (ax 1 +by 1 , ax 2 +by 2 ) = (ax 2 +by 2 , ax 1 +by 1 ) = a(x 2 , x 1 )+b(y 2 , y 1 ) = aT (x 1 , x 2 )+bT (y 1 , y 2 )
T is linear. T (x, y) = (y, x) = 0. nullspaceT = { 0 }; kerT = 0 T (x, y) = (y, x) = y(1, 0) + x(0, 1). rangeT = V 2. rankT = 2 Exercise 2. T (x, y) = (x, −y)
T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , −(ax 2 + by 2 )) = a(x 1 , −x 2 ) + b(y 1 , −y 2 ) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )
T is linear. (x, −y) = 0. nullspaceT = { 0 }; kerT = 0 (x, −y) = x(1, 0) + −y(0, 1) rangeT = V 2 ; rankT = 2 Exercise 3. T (x, y) = (x, 0).
T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , 0) = a(x 1 , 0) + b(y 1 , 0) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )
T is linear. T (x, y) = (x, 0) = 0 =⇒ x = 0, y ∈ R. nullspaceT = L({(0, 1)}) kerT = 1 T (x, y) = (x, 0) = x(1, 0) rangeT = L({(1, 0)}). rankT = 1 Exercise 4. T (x, y) = (x, x)
T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , ax 1 + by 1 ) = a(x 1 , x 1 ) + b(y 1 , y 1 ) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )
T is linear. T (x, y) = (x, x) = 0 =⇒ x = 0, y ∈ R. nullspaceT = L({(0, 1)}) kerT = 1 T (x, y) = (x, x) = x(1, 1) rangeT = L({(1, 1)}). rankT = 1 Exercise 5. T (x, y) = (x^2 , y^2 )
T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = ((ax 1 + by 1 )^2 , (ax 2 + by 2 )^2 ) = = (a^2 x^21 , a^2 x^22 ) + (2abx 1 y 1 , 2 abx 2 y 2 ) + (b^2 y^21 , b^2 y^22 ) 6 = aT (x 1 , x 2 ) + bT (y 1 , y 2 )
T is not linear. Exercise 6. T (x, y) = (ex, ey^ )
T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (eax^1 +by^1 , eax^2 +by^2 ) 6 = aT (x 1 , x 2 ) + bT (y 1 , y 2 )
T is not linear. Exercise 7. T (x, y) = (x, 1)
T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , 1) 6 = a(x 1 , 1) + b(y 1 , 1) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )
Thus, rotations are linear transformations. nullspaceT = { 0 }. nullT = 0 rangeT = {(r, θ)}. rankT = 2 Exercise 12. T maps each point onto its reflection with respect to a fixed line through the origin.
We showed above that rotations are linear transformations. Then without loss of generality, consider reflection about the x-axis. T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , −ax 2 − by 2 ) = a(x 1 , −x 2 ) + b(y 1 , −y 2 ) aT (x 1 , x 2 ) + bT (y 1 , y 2 ) = a(x 1 , −x 2 ) + b(y 1 , y − 2)
So reflection about the x axis is linear. Suppose R is the rotation of the fixed line into the x-axis and R is length preserving. Then for R−^1 T R, reflection about any fixed axis, (R−^1 is linear too, since it’s just a rotation in the opposite direction of R)
R−^1 T R(ax + by) = R−^1 T (aRx + bRy) = R−^1 (aT Rx + bT Ry) = aR−^1 T Rx + bR−^1 T Ry
T is linear. nullT = 0 nullspaceT = { 0 } rankT = 2 rangeT = {(x, y)} Exercise 13. T maps every point onto the point (1, 1).
T (ax + by) = (1, 1) 6 = aT (x) + bT (y) = (a + b)(1, 1) T is nonlinear. Exercise 14. T (r, θ) = (2r, θ)
T (x 1 ) + T (x 2 ) = 2r 1 eiθ^1 + 2r 2 eiθ^2 = 2(r 1 eiθ^ + r 2 eiθ^2 ) T (x 1 + y 1 ) = T (r 1 eiθ^1 + r 2 eiθ^2 ) so
|r 1 eiθ^1 + r 2 eiθ^2 | =
r 12 + r^22 + 2r 1 r 2 cos (θ 1 − θ 2 ) = |T (x 1 ) + T (x 2 )| we see that the argument remains unchanged, while the magnitude is multiplied by 2 in each case nullT = 0 nullspaceT = { 0 } rankT = 2 rangeT = {(r, θ)}
Exercise 15. T (a(r, θ)) = (ar, 2 θ) = a(r, 2 θ) = aT (r, θ).
Consider this counterexample, where x 1 = 1~ex, x 2 = 1~ex. Not linear. Exercise 16. T (x, y, z) = (z, y, x).
T (ax) = aT (x), T (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) = (z 1 , y 1 , x 1 ) + (z 2 , y 2 , x 2 ) =⇒ linear T (x) = 0 when x = 0 nullspaceT = { 0 } rangeT = V 3 nullT = 0 rankT = 3
Exercise 17. T (x, y, z) = (x, y, 0).
T (a(x, y, z)) = a(x, y, 0) = aT (x, y, z); T (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) = = (x 1 + x 2 , y 1 + y 2 , 0) = T (x 1 , y 1 , z 1 ) = T (x 2 , y 2 , z 2 ) =⇒ T linear T (x, y, z) = 0 if x = y = 0 nullspaceT = L({(0, 0 , 1)}) nullT = 1 rangeT = L({(1, 0 , 0), (0, 1 , 0)}) rankT = 2
Exercise 18. T (x, y, z) = (x, 2 y, 3 z).
T (ax) = (ax, 2 ay, 3 az) = aT (x); T (x 1 + x 2 ) = (x 1 + x 2 , 2(y 1 + y 2 ), 3(z 1 + z 2 )) = T (x 1 ) + T (x 2 ) T (x) = 0 when x = y = z = 0 nullspaceT = { 0 } nullT = 0 rangeT = V 3 rankT = 3
Exercise 19. T (x, y, z) = (x, y, 1).
T (x 1 ) + T (x 2 ) = (x 1 + x 2 , y 1 + y 2 , 2) 6 = T (x 1 + x 2 ) T is not linear. Exercise 20. T (x, y, z) = (x + 1, y + 1, z − 1)
T (ax + by) = (ax 1 + by 1 + 1, ax 2 + by 2 + 1, ax 3 + by 3 − 1) 6 = aT (x) + bT (y) = = a(x 1 + 1, x 2 + 1, x 3 − 1) + b(y 1 + 1, y 2 + 1, y 3 − 1)
Exercise 21. T (x, y, z) = (x + 1, y + 2, z + 3)
T (ax+by) = (ax 1 +by 1 +1, ax 2 +by 2 +2, ax 3 +by 3 +3) 6 = aT (x)+bT (y) = a(x 1 +1, x 2 +2, x 3 +3)+b(y 1 +1, y 2 +2, y 3 +3)
Exercise 22. T (x, y, z) = (x, y^2 , z^3 )
T (ax + by) = (ax 1 + by 1 , (ax 2 + by 2 )^2 , (ax 3 + by 3 )^3 ) = (ax 1 + by 1 , a^2 x^22 + 2abx 2 y 2 + b^2 y^22 , a^2 x^23 + 2abx 3 y 3 + b^2 y^23 ) 6 = 6 = aT (x) + bT (y) = a(x 1 , x^22 , x^23 ) + b(y 1 , y 22 , y 32 )
Exercise 23. T (x, y, z) = (x + z, 0 , x + y)
T (ax+by) = (ax 1 +by 1 +ax 3 +by 3 , 0 , ax 1 +by 1 +ax 2 +by 2 ) = a(x 1 +x 3 , 0 , x 1 +x 2 )+b(y 1 +y 3 , 0 , y 1 +y 2 ) = aT (x)+bT (y)
T is linear.
(x + z, 0 , x + y) = 0
x = −z x = −y (x, y, z) = x(1, − 1 , −1) =⇒ nullspaceT = L({(1, − 1 , −1)}) kerT = 1
(x + z, 0 , x + y) = (x + z)(1, 0 , 0) + (x + y)(0, 0 , 1) rangeT = L({(1, 0 , 0), (0, 0 , 1)}), rankT = 2 Exercise 24.
p(x) =
∑^ n
j=
aj xj
q(x) =
∑^ n
j=
bj xj
(p + q)(x) =
∑^ n
j=
(aj + bj )xj
cp(x) = c
∑^ n
j=
aj xj^ =
∑^ n
j=
caj xj
T (p + q) =
∑^ n
j=
(aj + bj )(x + 1)j^ =
∑^ n
j=
aj (x + 1)j^ +
∑^ n
j=
bj (x + 1)j^ = T (p) + T (q)
T (cp) =
∑^ n
j=
caj (x + 1)j^ = c
∑^ n
j=
aj (x + 1)j^ = cT (p)
T linear. Consider
∑n j=0 aj^ (x^ + 1)
j (^) = 0. Apply differentiation repeatedly to get aj = 0, ∀ j = 0,... , n.
nullspaceT∑ = { 0 }. nullT = 0. n j=0 aj^ (x^ + 1)
j (^) = ∑n j=0 bj^ x
j (^). rangeT = L({(x + 1)j (^) |j = 0,... , n}); rankT = n + 1
Exercise 25. On (− 1 , 1), f ∈ V ; g = T (f ), g(x) = xf ′(x)
T (f + g) = x(f ′^ + g′) = xf ′^ + xg′^ = T (f ) + T (g) T (af ) = x(af )′^ = axf ′^ = aT (f )
T (f ) = xf ′(x) = 0 x is arbitrary, consider x 6 = 0. f ′(x) = 0 =⇒ f (x) = c 0. nullspaceT = { 1 }, nullT = 1 rangeT = V rankT = dimV − 1 → ∞ Exercise 26. g(x) =
∫ (^) b a f^ (t) sin (x^ −^ t)dt^ for^ a^ ≤^ x^ ≤^ b
T (f + g) =
∫ (^) b
a
(f (t) + g(t)) sin (x − t)dt =
∫ (^) b
a
f (t) sin (x − t)dt +
∫ (^) b
a
g(t) sin (x − t)dt
T (cf ) =
∫ (^) b
a
cf (t) sin (x − t)dt
T is linear.
g(x) =
∫ (^) b
a
f (t)(s(x)c(t) − c(x)s(t))dt = s(x)
∫ (^) b
a
f (t)c(t)dt − c(x)
∫ (^) b
a
f (t)s(t)dt = k 1 s(x) + k 2 c(x)
RangeT = L({sin x, cos x}); rankT = 2
For the nullspace, now g(x) = s(x)
∫ (^) b a f^ (t)c(t)dt^ −^ c(x)^
∫ (^) b a f^ (t)s(t)dt. If we take a look at^ Exercise 29^ of this section, then we see the answer: by the orthogonality of sin’s and cos’s, sin nt and cos nt will be orthogonal to cos t and sin t for n = 2,.... So depending upon a and b, at least the integration over a period of 1 will result in zero for both
f c and
f s. Then for the “ends” of the integration bound that don’t make a full period, make f (t) = 0. Since n = 2, · · · → ∞ for sin nt, cos nt for the choice of f (t), nullspaceT = L({sin nt, cos nt|n = 2,... }), kerT = ∞
In general, (^) ∫ π
−π
c(nt)c(mt) =
∫ (^) π
−π
(cos (n − m)t + cos (n + m)t)dt = 0 + 0 = 0 ∫ (^) π
−π
s(nt)c(mt) =
∫ (^) π
−π
(sin (n + m)t + sin (n − m)t)dt = 0 + 0 = 0 ∫ (^) π
−π
s(nt)s(mt) =
∫ (^) π
−π
(cos (n − m)t − cos (n + m)t)dt = 0 + 0 = 0
So S contains the functions f (x) = cos nx and f (x) = sin nx, since they satisfy the requirements. (3) As seen above, the set BS = {sin nx, cos nx|n = 2,... } consists of orthogonal functions with an inner product defined as
over a period. Thus, they are independent of each other (orthogonal elements are independent). They belong to S and S, being a subspace, must include all linear combinations of them, and so S is at least infinitely dimensional, since it must contain BS in its basis. (4) T (V ) = g(x) =
∫ (^) π
−π
(1 + cos (x − t))f (t)dt =
∫ (^) π
−π
(1 + cos x cos t + sin x sin t)f (t)dt =
∫ (^) π
−π
f (t)dt +
(∫ (^) π
−π
cos tf (t)dt
cos x +
(∫ (^) π
−π
f (t) sin tdt
sin x
BT (V ) = { 1 , cos x, sin x}; rankT (V ) = 3 (5) T (S) = 0 =⇒ nullspaceT = S (6) T (f ) = cf. Note that cf ∈ BT (V ). T (1) = 2π(1) T (s) = πs T (c) = πc
Exercise 30. We want the following: Let T : V → W be a linear transformation of a linear space V into a linear space W. If
V is infinite-dimensional, prove that at least one of T (V ), or N (T ), is infinite-dimensional. Assume dimN (T ) = k, dimT (V ) = r. Let e 1 ,... , ek be a basis for N (T ). Let e 1 ,... , ek, ek+1,... , ek+n be independent elements in V , where n > r.
Consider x =
∑k+n j=1 aj^ ej
T (x) = aj
k∑+n
j=
T (ej ) = aj
k∑+n
j=k+
T (ej )(since e 1 ,... , ek ∈ N (T ))
x ∈ V , so T (x) ∈ T (V ). Since dimT (V ) = r, and n > r, {T (ej )|j = k + 1,... , k + n} must be dependent (Apostol’s Thm.1.5 of Vol.2: any set of r + 1 elements of a dim = r space is dependent).
Then ∃ {aj }, aj ’s not all zero, s.t.
k∑+n
j=k+
aj T (ej ) = T
k∑+n
j=k+
(aj ej ) = 0
k∑+n
j=k+
aj ej ∈ N (T ) so
k∑+n
j=k+
aj eJ =
∑^ n
j=
aj ej
∑k+n j=1 aj^ ej^ = 0^ is a nontrivial representation of^0. Then^ e^1 ,... , ek+n^ are dependent. Contradiction.
2.8 EXERCISES - INTRODUCTION, MOTIVATION FOR THE CHOICE OF AXIOMS FOR A DETERMINANT FUNCTION, A SET OF AXIOMS FOR A DETERMINANT FUNCTION, COMPUTATION OF DETERMINANTS,
Exercise 1. V = { 0 , 1 }
T 1 (0, 1) = 0, 0 T 2 (0, 1) = 0, 1 T 3 (0, 1) = 1, 0 T 4 (0, 1) = 1, 1
T 2 , T 3 are one-to-one, by inspection. T 2 − 1 = T 2 ; T 3 − 1 = T 3
Exercise 2. V = { 0 , 1 , 2 }. Note, there are obviously 33 = 27 possible ranges and thus 27 possible functions (since for each
element in V , there are 3 possible values it could be mapped to). Consider only the 6 that are one-to-one (choice of 3 values, then 2 values, then 1 value at each subsequent stage).
Exercise 3. T (x, y) = (y, x) Suppose T (x 1 , y 1 ) = (y 1 , x 1 ) = T (x 2 , y 2 ) = (y 2 , x 2 ).
Then y 1 = y 2 , x 1 = x 2 → (x 1 , y 1 ) = (x 2 , y 2 )
T is one-to-one on V ; T (V 2 ) = V 2 , (u, v) = (y, x)
T −^1 = T (by inspection). Exercise 4. T (x, y) = (x, −y)
Suppose T (x 1 , y 1 ) = (x 1 , −y 1 ) = T (x 2 , y 2 ) = (x 2 , −y 2 ) Then x 1 = x 2 , −y 1 = −y 2 or y 1 = y 2 =⇒ (x 1 , y 1 ) = (x 2 , y 2 )
T is one-to-one on V , T (V 2 ) = V 2 , (u, v) = (x, −y)
T −^1 = T Exercise 5. T (x, y) = (x, 0).
Note that T (x, 1) = (x, 0) = T (x, 2). T is not one-to-one. Exercise 6. T (x, y) = (x, x). Note that T (x, 1) = T (x, 2) = (x, x). T is not one-to-one.
Exercise 7. T (x, y) = (x^2 , y^2 ). T (x, y) = T (x, −y) = (x^2 , (−y)^2 ) = (x^2 , y^2 ). T is not one-to-one.
Exercise 8. T (x, y) = (ex, ey^ ).
Suppose T (x 1 , y 1 ) = T (x 2 , y 2 ). Then ex^1 = ex^2 , ey^1 = ey^2 and since ex^ is one-to-one, ∀ x ∈ R, x 1 = x 2.
T is one-to-one. u = ex, v = ey^ , u, v ∈ R+. T −^1 (x, y) = (ln x, ln y)
Exercise 9. T (x, y) = (x, 1) T (x, 1) = T (x, 2) = (x, 1), so T is not one-to-one.
Exercise 10. T (x, y) = (x + 1, y + 1).
If T (x 1 , y 1 ) = (x 1 + 1, y 1 + 1) = T (x 2 , y 2 ) = (x 2 + 1, y 2 + 1), then x 1 = x 2 , y 1 = y 2 , (x 1 , y 1 ) = (x 2 , y 2 ). T is one-to-one. u = x + 1, v = y + 1. T −^1 (x, y) = (x − 1 , y − 1) Exercise 11. T (x, y) = (x − y, x + y).
If T (x 1 , y 1 ) = (x 1 − y 1 , x 1 + y 1 ) = T (x 2 , y 2 ) = (x 2 − y 2 , x 2 + y 2 ) x 1 − y 1 = x 2 − y 2 x 1 + y 1 = x 2 + y 2
then x 1 = x 2 , y 1 = y 2. T is one-to-one. u = x − y v = x + y T (V 2 ) = L({(1, 1), (− 1 , 1)}); T −^1 (x, y) =
( (^) x+y 2 ,^
−x+y 2
Exercise 12. T (x, y) = (2x − y, x + y)
If T (x 1 , y 1 ) = (2x 1 − y 1 , x 1 + y 1 ) = T (x 2 , y 2 ) = (2x 2 − y 2 , x 2 + y 2 ) 2 x 1 − y 1 = 2x 2 − y 2 x 1 + y 1 = x 2 + y 2 so
x 1 = x 2 y 1 = y 2 T is one-to-one. u = 2x − y v = x + y
T (V 2 ) = L({(2, 1), (− 1 , 1)}). T −^1 (x, y) =
x+y 3 ,^
x− 2 y − 3
Exercise 13. T (x, y, z) = (z, y, x)
If T (x 1 , y 1 , z 1 ) = (z 1 , y 1 , x 1 ) = T (x 2 , y 2 , z 2 ) = (z 2 , y 2 , x 2 )
then
z 1 = z 2 y 1 = y 2 x 1 = x 2
=⇒ T is one-to-one.
T (V 3 ) = V 3 , u = z, v = y, w = z. T −^1 = T
(ST )n^ = (ST )(ST )n−^1 = · · · = (ST )... (ST ) ︸ ︷︷ ︸ n times
= SST (ST )... (ST )T = · · · = SnT n
Exercise 23. (T −^1 S−^1 )(ST ) = T −^1 S−^1 ST = T −^11 T = 1, so (ST )−^1 = T −^1 S−^1. Its uniqueness is guaranteed by
theorem (left inverses, if they exist, are unique). Exercise 24. (ST )−^1 ST = (ST )−^1 T S = 1.
Since left inverses are unique (this theorem is important to use here), then (T S)−^1 = (ST )−^1 =⇒ S−^1 T −^1 = T −^1 S−^1 Exercise 25.
(S + T )(S + T ) = S^2 + ST + T S + T 2 = S^2 + 2ST + T 2 (S + T )^3 = (S^2 + ST + T S + T 2 )(S + T ) = S^3 + ST S + T S^2 + T 2 S + S^2 T + ST 2 + T ST + T 3 = = S^3 + 3S^2 T + 3T 2 S + T 3
Exercise 26.
S(x, y, z) = (z, y, x) T (x, y, z) = (x, x + y, x + y + z) (1) (ST ) = (x + y + z, x + y, x) (T S) = (z, z + y, x + y + z) ST − T S = (x + y, x − z, −y − z) S^2 = 1
T 2 = (x, 2 x + y, 3 x + 2y + z) (ST )^2 = (3x + 2y + z, 2 x + 2y + z, x + y + z) (T S)^2 = (x + y + z, x + 2y + 2z, x + 2y + 3z) (ST − T S)^2 = (2x + y − z, x + 2y + z, −x + 2z + y) (2) If S(x 1 , y 1 , z 1 ) = (z 1 , y 1 , x 1 ) = S(x 2 , y 2 , z 2 ) = (z 2 , y 2 , x 2 ), then z 1 = z 2 , y 1 = y 2 , x 1 = x 2 If T (x 1 , y 1 , z 1 ) = (x 1 , x 1 + y 1 , x 1 + y 1 + z 1 ) = T (x 2 , y 2 , z 2 ) = (x 2 , x 2 + y 2 , x 2 + y 2 + z 2 ), then x 1 = x 2 , y 1 = y 2 , z 1 = z 2. Thus S, T are one-to-one. (S−^1 ) = S (T −^1 )(x, y, z) = (x, y − x, z − y) (ST )−^1 = T −^1 S−^1 = T −^1 S T −^1 S(x, y, z) = (z, y − z, x − y) (T S)−^1 = S−^1 T −^1 S−^1 T −^1 (x, y, z) = S(x, y − x, z − y) = (z − y, y − x, x)
(T − 1)(x, y, z) = (0, x, x + y) (T − 1)^2 (x, y, z) = (0, 0 , x) (T − 1)^3 (x, y, z) = (0, 0 , 0) and for all higher powers
Exercise 27. T (p) = q(x) =
∫ (^) x 0 p(t)dt
DT (p) = d dx
∫ (^) x
0
p(t)dt = p(x) (by first fundamental thm. of calculus)
T D(p) =
∫ (^) x 0 dtp
′(t)
Suppose p = x + 1, p′^ = 1.
∫ (^) x 0 dt1 =^ x^6 =^ p nullspaceT D = {c 0 | where c 0 ∈ R} rangeT D = { all polynomials p s.t. p(0) = 0 }
Exercise 28. Let V be linear space of all real polynomials p(x). D ≡ differential operator T is a linear map from p(x) onto xp′(x) (1) p(x) = 2 + 3x − x^2 + 4x^3 D, T, DT, T D, DT − T D, T 2 D^2 − D^2 T 2. Dp = 3 − 2 x + 12x^2 T p = 3x − 2 x^2 + 12x^3 DT p = 3 − 4 x + 36x^2 T Dp = − 2 x + 24x^2
DT − T D = 3 − 2 x + 12x^2 T 2 D^2 − D^2 T 2 = 24x − (−8 + 216x) = 8 − 192 x
(2) We want T (p) = p. Try p =
∑n j=0 aj^ x
j (^).
T (p) = x
∑^ n
j=
jaj xj−^1 =
∑^ n
j=
jaj xj^ =
∑^ n
j=
aj xj^ =⇒
∑^ n
j=
aj (j − 1)xj^ = 0
aj (j − 1)xj^ = 0
=⇒ j = 1
p = a 1 x (3) We want (DT − 2 D)(p) = 0 or DT (p) − 2 D(p)
DT (p) =
∑^ n
j=
j^2 aj xj−^1 = 2
∑^ n
j=
jaj xj−^1 =⇒
∑^ n
j=
(j^2 − 2 j)aj xj−^1 =
∑^ n
j=
j(j − 2)aj xj−^1 = 0
j = 2, 0 so that p = a 2 x^2 + a 0
(4) We want (DT − T D)n(p) = Dn(p).
∑^ n
j=
aj xj^ =
∑^ n
j=
jaj xj−^1
∑^ n
j=
aj xj^ =
∑^ n
j=
j^2 aj xj−^1
∑^ n
j=
j(j − 1)aj xj−^1
(DT − T D)p =
∑^ n
j=
jaj xj−^1 = Dp
Dn^ = (DT − T D)n^ ∀ p ∈ V
Exercise 29. xp(x). T (p) = xp.
DT (p) = D(xp) = p + xp′ T D(p) = T p′^ = xp′^
=⇒ (DT − T D)(p) = p
T n(p) = T n−^1 (xp) = · · · = T (xn−^1 p) = xnp DT n(p) = nxn−^1 p + xnp′ T nD(p) = T n(p′) = T n−^1 (xp′) = · · · = T (xn−^1 p′) = xnp′^
=⇒ (DT n^ − T nD)(p) = nxn−^1 p = nT n−^1 (p)
Exercise 30.
n = 1, ST − T S = 1 n = 2, ST 2 − T 2 S = ST 2 + T (1 − ST ) = T + T = 2T Assume the nth case, ST n^ − T nS = nT n−^1 ST n+1^ − T n+1S = ST nT + T n(1 − ST ) = (nT n−^1 )T + T n^ = (n + 1)T n
Exercise 31. p(x) =
∑n j=0 cj^ x
j (^).
Rp = r = r(x) = p(0)
Sp = s = s(x) =
∑^ n
k=
ckxk−^1
T p = t = t(x) =
∑^ n
k=
ckxk+
(1) p(x) = 2 + 3x − x^2 + x^3. We want to know R, S, T, ST, T S, (T S)^2 , T 2 S^2 , S^2 T 2 , T RS, RST.
Rp = p(0) = 2 Sp = 3 − x + x^2 T p = 2x + 3x^2 − x^3 + x^4
ST (p) = 2 + 3x − x^2 + x^3 T S(p) = 3x − x^2 + x^3 (T S)^2 (p) = 3x − x^2 + x^3
T 2 S^2 = T 2 (−1 + x) = −x^2 + x^3 S^2 T 2 = S^2 (2x^2 + 3x^3 − x^4 + x^5 ) = 2 + 3x − x^2 + x^3 T RSp = 3x RST p = 2
(2) R, S, T linear? R(c 1 p 1 + c 2 p 2 ) = (c 1 p 1 + c 2 p 2 )(0) = c 1 p 1 (0) + c 2 p 2 (0) = c 1 R(p 1 ) + c 2 R(p 2 )