Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resolução Griffiths-Introduction to Quantum Mechanics 2E solution, Provas de Cultura

exercicios resolvidos griffiths mecanica quantica

Tipologia: Provas

2015

Compartilhado em 21/01/2015

janine-d-1
janine-d-1 🇧🇷

5

(21)

5 documentos

1 / 303

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Contents
Preface 2
1 The Wave Function 3
2 Time-Independent Schrödinger Equation 14
3 Formalism 62
4 Quantum Mechanics in Three Dimensions 87
5 Identical Particles 132
6 Time-Independent Perturbation Theory 154
7 The Variational Principle 196
8 The WKB Approximation 219
9 Time-Dependent Perturbation Theory 236
10 The Adiabatic Approximation 254
11 Scattering 268
12 Afterword 282
Appendix Linear Algebra 283
2nd Edition – 1st Edition Problem Correlation Grid 299
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Resolução Griffiths-Introduction to Quantum Mechanics 2E solution e outras Provas em PDF para Cultura, somente na Docsity!

Contents

  • Preface
  • 1 The Wave Function
  • 2 Time-Independent Schrödinger Equation
  • 3 Formalism
  • 4 Quantum Mechanics in Three Dimensions
  • 5 Identical Particles
  • 6 Time-Independent Perturbation Theory
  • 7 The Variational Principle
  • 8 The WKB Approximation
  • 9 Time-Dependent Perturbation Theory
  • 10 The Adiabatic Approximation
  • 11 Scattering
  • 12 Afterword
  • Appendix Linear Algebra
  • 2 nd Edition – 1 st Edition Problem Correlation Grid

Preface

These are my own solutions to the problems in Introduction to Quantum Mechanics, 2nd ed. I have made every effort to insure that they are clear and correct, but errors are bound to occur, and for this I apologize in advance. I would like to thank the many people who pointed out mistakes in the solution manual for the first edition, and encourage anyone who finds defects in this one to alert me (griffith@reed.edu). I’ll maintain a list of errata on my web page (http://academic.reed.edu/physics/faculty/griffiths.html), and incorporate corrections in the manual itself from time to time. I also thank my students at Reed and at Smith for many useful suggestions, and above all Neelaksh Sadhoo, who did most of the typesetting.

At the end of the manual there is a grid that correlates the problem numbers in the second edition with those in the first edition.

David Griffiths

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

4 CHAPTER 1. THE WAVE FUNCTION

Problem 1.

(a)

〈x^2 〉 =

∫ (^) h

0

x^2

hx

dx =

h

5 x

5 / 2

h 0

h^2

σ^2 = 〈x^2 〉 − 〈x〉^2 = h^2 5

h 3

h^2 ⇒ σ = 2 h 3

= 0. 2981 h.

(b)

P = 1 −

∫ (^) x+

x−

hx

dx = 1 − 1 2

h

x)

x+

x−

= 1 − √^1

h

x+ − √x−

x+ ≡ 〈x〉 + σ = 0. 3333 h + 0. 2981 h = 0. 6315 h; x− ≡ 〈x〉 − σ = 0. 3333 h − 0. 2981 h = 0. 0352 h.

P = 1 −

Problem 1.

(a)

1 =

−∞

Ae−λ(x−a) 2 dx. Let u ≡ x − a, du = dx, u : −∞ → ∞.

1 = A

−∞

e−λu 2 du = A

π λ

⇒ A =

λ π

(b)

〈x〉 = A

−∞

xe−λ(x−a) 2 dx = A

−∞

(u + a)e−λu 2 du

= A

[∫ ∞

−∞

ue−λu 2 du + a

−∞

e−λu 2 du

]

= A

0 + a

π λ

= a.

〈x^2 〉 = A

−∞

x^2 e−λ(x−a) 2 dx

= A

−∞

u^2 e−λu 2 du + 2a

−∞

ue−λu 2 du + a^2

−∞

e−λu 2 du

= A

[

2 λ

π λ

  • 0 + a^2

π λ

]

= a^2 +

2 λ

σ^2 = 〈x^2 〉 − 〈x〉^2 = a^2 +

2 λ − a^2 =

2 λ ; σ =

2 λ

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

CHAPTER 1. THE WAVE FUNCTION 5

(c)

A

a x

ρ(x)

Problem 1.

(a)

|A|^2

a^2

∫ (^) a

0

x^2 dx +

|A|^2

(b − a)^2

∫ (^) b

a

(b − x)^2 dx = |A|^2

a^2

x^3 3

a

0

(b − a)^2

(b − x)^3 3

b

a

= |A|^2

[

a 3

b − a 3

]

= |A|^2

b 3

⇒ A =

b

(b)

a x

A

b

Ψ

(c) At x = a. (d)

P =

∫ (^) a

0

|Ψ|^2 dx =

|A|^2

a^2

∫ (^) a

0

x^2 dx = |A|^2 a 3

a b

P = 1 if b = a,  P = 1/2 if b = 2a. 

(e)

〈x〉 =

x|Ψ|^2 dx = |A|^2

a^2

∫ (^) a

0

x^3 dx + 1 (b − a)^2

∫ (^) b

a

x(b − x)^2 dx

=^3

b

a^2

x^4 4

a

0

(b − a)^2

b^2 x

2 2 − 2 b x

3 3

  • x

4 4

b

a

4 b(b − a)^2

[

a^2 (b − a)^2 + 2b^4 − 8 b^4 /3 + b^4 − 2 a^2 b^2 + 8a^3 b/ 3 − a^4

]

4 b(b − a)^2

b^4 3 − a^2 b^2 +

a^3 b

4(b − a)^2 (b^3 − 3 a^2 b + 2a^3 ) = 2 a + b 4

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

CHAPTER 1. THE WAVE FUNCTION 7

Problem 1.

From Eq. 1.33, d dt〈p 〉= −iℏ

∂t

Ψ∗^ ∂ ∂xΨ

dx. But, noting that (^) ∂x∂t∂^2 Ψ = (^) ∂t∂x∂^2 Ψ and using Eqs. 1.23-1.24:

∂ ∂t

Ψ∗^

∂x

∂t

∂x

+ Ψ∗^

∂x

∂t

[

iℏ 2 m

∂^2 Ψ∗

∂x^2

i ℏ

V Ψ∗

]

∂x

+ Ψ∗^

∂x

[

iℏ 2 m

∂^2 Ψ

∂x^2

i ℏ

V Ψ

]

= iℏ 2 m

[

Ψ∗^ ∂

∂x^3

∂x^2

∂x

]

  • i ℏ

[

V Ψ∗^ ∂Ψ

∂x

− Ψ∗^ ∂

∂x

(V Ψ)

]

The first term integrates to zero, using integration by parts twice, and the second term can be simplified to V Ψ∗^ ∂ ∂xΨ − Ψ∗V ∂ ∂xΨ − Ψ∗^ ∂V∂x Ψ = −|Ψ|^2 ∂V∂x. So

d〈p〉 dt = −iℏ

i ℏ

−|Ψ|^2

∂V

∂x dx = 〈−

∂V

∂x

〉. QED

Problem 1.

Suppose Ψ satisfies the Schr¨odinger equation without V 0 : iℏ ∂ ∂tΨ = − ℏ 2 2 m

∂^2 Ψ ∂x^2 +^ V^ Ψ. We want to find the solution Ψ 0 with V 0 : iℏ ∂ ∂tΨ^0 = − ℏ 2 2 m ∂^2 Ψ 0 ∂x^2 + (V^ +^ V^0 )Ψ^0. Claim: Ψ 0 = Ψe−iV^0 t/ℏ. Proof: iℏ ∂ ∂tΨ^0 = iℏ ∂ ∂tΨ e−iV^0 t/ℏ^ + iℏΨ

− iV ℏ^0

e−iV^0 t/ℏ^ =

[

2 2 m ∂^2 Ψ ∂x^2 +^ V^ Ψ

]

e−iV^0 t/ℏ^ + V 0 Ψe−iV^0 t/ℏ = − 2 ℏm^2 ∂ (^2) Ψ 0 ∂x^2 + (V^ +^ V^0 )Ψ^0.^ QED This has no effect on the expectation value of a dynamical variable, since the extra phase factor, being inde- pendent of x, cancels out in Eq. 1.36.

Problem 1.

(a)

1 = 2|A|^2

0

e−^2 amx (^2) /ℏ dx = 2|A|^2

√ (^) π (2am/ℏ)

= |A|^2

πℏ 2 am

; A =

2 am πℏ

(b)

∂Ψ ∂t = −iaΨ; ∂Ψ ∂x = − 2 amx ℏ

∂x^2 = − 2 am ℏ

Ψ + x ∂Ψ ∂x

= − 2 am ℏ

1 − 2 amx

2 ℏ

Plug these into the Schr¨odinger equation, iℏ ∂ ∂tΨ = − ℏ 2 2 m

∂^2 Ψ ∂x^2 +^ V^ Ψ:

V Ψ = iℏ(−ia)Ψ +

ℏ^2

2 m

2 am ℏ

2 amx^2 ℏ

[

ℏa − ℏa

2 amx^2 ℏ

)]

Ψ = 2a^2 mx^2 Ψ, so V (x) = 2ma^2 x^2.

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

8 CHAPTER 1. THE WAVE FUNCTION

(c)

〈x〉 =

−∞

x|Ψ|^2 dx = 0. [Odd integrand.]

〈x^2 〉 = 2|A|^2

0

x^2 e−^2 amx (^2) /ℏ dx = 2|A|^2

22 (2am/ℏ)

πℏ 2 am

4 am

〈p〉 = m d〈x〉 dt

〈p^2 〉 =

i

∂x

Ψdx = −ℏ^2

Ψ∗^ ∂

∂x^2 dx

= −ℏ^2

[

2 am ℏ

2 amx^2 ℏ

]

dx = 2amℏ

|Ψ|^2 dx − 2 am ℏ

x^2 |Ψ|^2 dx

= 2amℏ

2 am ℏ 〈x

= 2amℏ

2 am ℏ

4 am

= 2amℏ

= amℏ.

(d)

σ^2 x = 〈x^2 〉 − 〈x〉^2 =

4 am =⇒ σx =

4 am ; σ p^2 = 〈p^2 〉 − 〈p〉^2 = amℏ =⇒ σp =

amℏ.

σxσp =

ℏ 4 am

amℏ = ℏ 2. This is (just barely) consistent with the uncertainty principle.

Problem 1.

From Math Tables: π = 3. 141592653589793238462643 · · ·

(a) P P^ (0) = 0(5) = 3^ / 25 PP^ (1) = 2(6) = 3//^2525 PP^ (2) = 3(7) = 1//^2525 PP^ (3) = 5(8) = 2//^2525 PP^ (4) = 3(9) = 3//^2525

In general, P (j) = N N^ (j ).

(b) Most probable: 3. Median: 13 are ≤ 4, 12 are ≥ 5, so median is 4. Average: 〈j〉 = 251 [0 · 0 + 1 · 2 + 2 · 3 + 3 · 5 + 4 · 3 + 5 · 3 + 6 · 3 + 7 · 1 + 8 · 2 + 9 · 3] = 251 [0 + 2 + 6 + 15 + 12 + 15 + 18 + 7 + 16 + 27] = 11825 = 4.72. (c) 〈j^2 〉 = 251 [0 + 1^2 · 2 + 2^2 · 3 + 3^2 · 5 + 4^2 · 3 + 5^2 · 3 + 6^2 · 3 + 7^2 · 1 + 8^2 · 2 + 9^2 · 3] = 251 [0 + 2 + 12 + 45 + 48 + 75 + 108 + 49 + 128 + 243] = 71025 = 28.4. σ^2 = 〈j^2 〉 − 〈j〉^2 = 28. 4 − 4. 722 = 28. 4 − 22 .2784 = 6.1216; σ =

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

10 CHAPTER 1. THE WAVE FUNCTION

ρ(x)

-2r -r r^ 2r x

∴ ρ(x) =

π√r^2 −x^2 ,^ if^ −^ r < x < r, 0 , otherwise. [Note: We want the magnitude of dx here.]

Total:

∫ (^) r −r 1 π√r^2 −x^2 dx^ =^

2 π

∫ (^) r 0 √^1 r^2 −x^2 dx^ =^

2 π sin

− (^1) x r

∣∣r 0 =^

2 π sin

π ·^ π 2 = 1. (b)

〈x〉 =

π

∫ (^) r

−r

x

r^2 − x^2

dx = 0 [odd integrand, even interval].

〈x^2 〉 =

π

∫ (^) r

0

√^ x^2 r^2 − x^2

dx =

π

[

x 2

r^2 − x^2 + r^2 2 sin

− 1 ( (^) x r

)]∣∣

r

0

π

r^2 2 sin

− (^1) (1) = r^2

σ^2 = 〈x^2 〉 − 〈x〉^2 = r^2 /2 =⇒ σ = r/

To get 〈x〉 and 〈x^2 〉 from Problem 1.11(c), use x = r cos θ, so 〈x〉 = r〈cos θ〉 = 0, 〈x^2 〉 = r^2 〈cos^2 θ〉 = r^2 /2.

Problem 1.

Suppose the eye end lands a distance y up from a line (0 ≤ y < l), and let x be the projection along that same direction (−l ≤ x < l). The needle crosses the line above if y + x ≥ l (i.e. x ≥ l − y), and it crosses the line below if y + x < 0 (i.e. x < −y). So for a given value of y, the probability of crossing (using Problem 1.12) is

P (y) =

∫ (^) −y

−l

ρ(x)dx +

∫ (^) l

l−y

ρ(x)dx =

π

{∫ (^) −y

−l

l^2 − x^2

dx +

∫ (^) l

l−y

l^2 − x^2

dx

=^1

π

sin−^1

( (^) x l

−y −l

  • sin−^1

( (^) x l

l l−y

=^1

π

[

− sin−^1 (y/l) + 2 sin−^1 (1) − sin−^1 (1 − y/l)

]

sin−^1 (y/l) π −^

sin−^1 (1 − y/l) π. Now, all values of y are equally likely, so ρ(y) = 1/l, and hence the probability of crossing is

P =

πl

∫ (^) l

0

[

π − sin−^1

( (^) y l

− sin−^1

l − y l

)]

dy =

πl

∫ (^) l

0

[

π − 2 sin−^1 (y/l)

]

dy

πl

[

πl − 2

y sin−^1 (y/l) + l

1 − (y/l)^2

l 0

]

πl [l sin−^1 (1) − l] = 1 − 1 +

π

π

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

CHAPTER 1. THE WAVE FUNCTION 11

Problem 1.

(a) Pab(t) =

∫ (^) b a |Ψ(x, t) (^2) dx, so dPab dt =^

∫ (^) b a ∂ ∂t |Ψ| (^2) dx. But (Eq. 1.25):

∂|Ψ|^2 ∂t

∂x

[

iℏ 2 m

Ψ∗^

∂x

∂x

)]

∂t J(x, t).

dPab dt

∫ (^) b

a

∂x J(x, t)dx = − [J(x, t)]|ba = J(a, t) − J(b, t). QED

Probability is dimensionless, so J has the dimensions 1/time, and units seconds−^1.

(b) Here Ψ(x, t) = f (x)e−iat, where f (x) ≡ Ae−amx (^2) /ℏ , so Ψ ∂Ψ ∗ ∂x =^ f e −iat df dx e iat (^) = f df dx , and Ψ∗^ ∂ ∂xΨ = f (^) dxdf too, so J(x, t) = 0.

Problem 1.

(a) Eq. 1.24 now reads ∂Ψ ∗ ∂t =^ −^ iℏ 2 m ∂^2 Ψ∗ ∂x^2 +^ i ℏ V^ ∗Ψ∗, and Eq. 1.25 picks up an extra term:

∂ ∂t |Ψ|

(^2) = · · · + i ℏ |Ψ|

(^2) (V ∗ (^) − V ) = · · · + i ℏ |Ψ|

(^2) (V 0 + iΓ − V 0 + iΓ) = · · · − 2Γ ℏ |Ψ|

and Eq. 1.27 becomes dPdt = − 2Γ ℏ

(^2) dx = − 2Γ ℏ P^.^ QED (b)

dP P =^ −^

ℏ dt^ =⇒^ ln^ P^ =^ −^

ℏ t^ + constant =⇒^ P^ (t) =^ P^ (0)e

−2Γt/ℏ, so τ = ℏ 2Γ.

Problem 1.

Use Eqs. [1.23] and [1.24], and integration by parts:

d dt

−∞

Ψ∗ 1 Ψ 2 dx =

−∞

∂t (Ψ∗ 1 Ψ 2 ) dx =

−∞

∂t

Ψ 2 + Ψ∗ 1 ∂Ψ^2

∂t

dx

−∞

[(

−iℏ 2 m

∂^2 Ψ∗ 1

∂x^2

i ℏ

V Ψ∗ 1

iℏ 2 m

∂^2 Ψ 2

∂x^2

i ℏ

V Ψ 2

)]

dx

iℏ 2 m

−∞

∂^2 Ψ∗ 1

∂x^2

∂^2 Ψ 2

∂x^2

dx

= − iℏ 2 m

[

∂x

−∞

−∞

∂x

∂x dx − Ψ∗ 1 ∂Ψ^2 ∂x

−∞

−∞

∂x

∂x dx

]

= 0. QED

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

CHAPTER 1. THE WAVE FUNCTION 13

(h)

σxσp = √a 7

a

Problem 1.

h √ 3 mkB T

d ⇒ T < h^2 3 mkB d^2

(a) Electrons (m = 9. 1 × 10 −^31 kg):

T < (6.^6 ×^10

3(9. 1 × 10 −^31 )(1. 4 × 10 −^23 )(3 × 10 −^10 )^2

= 1. 3 × 105 K.

Sodium nuclei (m = 23mp = 23(1. 7 × 10 −^27 ) = 3. 9 × 10 −^26 kg):

T < (6.^6 ×^10

3(3. 9 × 10 −^26 )(1. 4 × 10 −^23 )(3 × 10 −^10 )^2

= 3 .0 K.

(b) P V = N kB T ; volume occupied by one molecule (N = 1, V = d^3 ) ⇒ d = (kB T /P )^1 /^3.

T <

h^2 2 mkB

P

kB T

⇒ T 5 /^3 <

h^2 3 m

P 2 /^3

k^5 B/^3

⇒ T <

kB

h^2 3 m

P 2 /^5.

For helium (m = 4mp = 6. 8 × 10 −^27 kg) at 1 atm = 1. 0 × 105 N/m^2 :

T < 1

(1. 4 × 10 −^23 )

(6. 6 × 10 −^34 )^2

3(6. 8 × 10 −^27 )

(1. 0 × 105 )^2 /^5 = 2.8 K.

For hydrogen (m = 2mp = 3. 4 × 10 −^27 kg) with d = 0.01 m:

T <

(6. 6 × 10 −^34 )^2

3(3. 4 × 10 −^27 )(1. 4 × 10 −^23 )(10−^2 )^2 =^3.^1 ×^10

− 14 K.

At 3 K it is definitely in the classical regime.

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

14 CHAPTER 2. THE TIME-INDEPENDENT SCHR ODINGER EQUATION¨

Chapter 2

Time-Independent Schr¨odinger

Equation

Problem 2.

(a) Ψ(x, t) = ψ(x)e−i(E^0 +iΓ)t/ℏ^ = ψ(x)eΓt/ℏe−iE^0 t/ℏ^ =⇒ |Ψ|^2 = |ψ|^2 e2Γt/ℏ. ∫ (^) ∞

−∞

|Ψ(x, t)|^2 dx = e2Γt/ℏ

−∞

|ψ|^2 dx.

The second term is independent of t, so if the product is to be 1 for all time, the first term (e2Γt/ℏ) must also be constant, and hence Γ = 0. QED (b) If ψ satisfies Eq. 2.5, − ℏ 2 2 m ∂^2 ψ dx^2 +^ V ψ^ =^ Eψ, then (taking the complex conjugate and noting that^ V^ and E are real): − ℏ 2 2 m

∂^2 ψ∗ dx^2 +^ V ψ ∗ (^) = Eψ∗, so ψ∗ (^) also satisfies Eq. 2.5. Now, if ψ 1 and ψ 2 satisfy Eq. 2.5, so too does any linear combination of them (ψ 3 ≡ c 1 ψ 1 + c 2 ψ 2 ):

ℏ^2

2 m

∂^2 ψ 3 dx^2

  • V ψ 3 = −

ℏ^2

2 m

c 1 ∂^2 ψ 1 dx^2

  • c 2 ∂^2 ψ 2 ∂x^2
  • V (c 1 ψ 1 + c 2 ψ 2 )

= c 1

[

2 2 m

d^2 ψ 1 dx^2

  • V ψ 1

]

  • c 2

[

2 2 m

d^2 ψ 2 dx^2

  • V ψ 2

]

= c 1 (Eψ 1 ) + c 2 (Eψ 2 ) = E(c 1 ψ 1 + c 2 ψ 2 ) = Eψ 3. Thus, (ψ + ψ∗) and i(ψ − ψ∗) – both of which are real – satisfy Eq. 2.5. Conclusion: From any complex solution, we can always construct two real solutions (of course, if ψ is already real, the second one will be zero). In particular, since ψ = 12 [(ψ + ψ∗) − i(i(ψ − ψ∗))], ψ can be expressed as a linear combination of two real solutions. QED (c) If ψ(x) satisfies Eq. 2.5, then, changing variables x → −x and noting that ∂^2 /∂(−x)^2 = ∂^2 /∂x^2 ,

ℏ^2

2 m

∂^2 ψ(−x) dx^2

  • V (−x)ψ(−x) = Eψ(−x);

so if V (−x) = V (x) then ψ(−x) also satisfies Eq. 2.5. It follows that ψ+(x) ≡ ψ(x) + ψ(−x) (which is even: ψ+(−x) = ψ+(x)) and ψ−(x) ≡ ψ(x) − ψ(−x) (which is odd: ψ−(−x) = −ψ−(x)) both satisfy Eq.

© c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

16 CHAPTER 2. THE TIME-INDEPENDENT SCHR ODINGER EQUATION¨

〈x^2 〉 =

a

∫ (^) a

0

x^2 sin^2

( (^) nπ a x

dx =

a

( (^) a nπ

) 3 ∫^ nπ 0

y^2 sin^2 y dy

= 2 a^2 (nπ)^3

[

y^3 6

y^3 4

sin 2y − y cos 2y 4

]nπ

0

= 2 a^2 (nπ)^3

[

(nπ)^3 6

nπ cos(2nπ) 4

]

= a^2

[

2(nπ)^2

]

〈p〉 = m d〈x〉 dt =^ 0.^ (Note^ : Eq.^1 .33 is much faster than Eq.^1.^35 .)

〈p^2 〉 =

ψ∗ n

i

d dx

ψn dx = −ℏ^2

ψ∗ n

d^2 ψn dx^2

dx

= (−ℏ^2 )

2 mEn ℏ^2

ψ∗ nψn dx = 2mEn =

nπℏ a

σ^2 x = 〈x^2 〉 − 〈x〉^2 = a^2

2(nπ)^2

a^2 4

(nπ)^2

; σx = a 2

(nπ)^2

σ^2 p = 〈p^2 〉 − 〈p〉^2 =

nπℏ a

; σp = nπℏ a

. ∴ σxσp =

(nπ)^2 3

The product σxσp is smallest for n = 1; in that case, σxσp = ℏ 2

π^2 3 −^ 2 = (1.136)ℏ/^2 >^ ℏ/^2.^ 

Problem 2.

(a) |Ψ|^2 = Ψ^2 Ψ = |A|^2 (ψ∗ 1 + ψ∗ 2 )(ψ 1 + ψ 2 ) = |A|^2 [ψ 1 ∗ ψ 1 + ψ∗ 1 ψ 2 + ψ 2 ∗ ψ 1 + ψ∗ 2 ψ 2 ].

|Ψ|^2 dx = |A|^2

[|ψ 1 |^2 + ψ∗ 1 ψ 2 + ψ∗ 2 ψ 1 + |ψ 2 |^2 ]dx = 2|A|^2 ⇒ A = 1/

(b)

Ψ(x, t) =

[

ψ 1 e−iE^1 t/ℏ^ + ψ 2 e−iE^2 t/ℏ

]

(but En ℏ = n^2 ω)

= √^1

a

[

sin

( (^) π a x

e−iωt^ + sin

2 π a x

e−i^4 ωt

]

= √^1

a e−iωt

[

sin

( (^) π a x

  • sin

2 π a x

e−^3 iωt

]

|Ψ(x, t)|^2 =^1 a

[

sin^2

( (^) π a x

  • sin

( (^) π a x

sin

2 π a x

e−^3 iωt^ + e^3 iωt

  • sin^2

2 π a x

)]

a

[

sin^2

( (^) π a x

  • sin^2

2 π a x

  • 2 sin

( (^) π a x

sin

2 π a x

cos(3ωt)

]

©^ c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

CHAPTER 2. THE TIME-INDEPENDENT SCHR ODINGER EQUATION¨ 17

(c)

〈x〉 =

x|Ψ(x, t)|^2 dx

=^1 a

∫ (^) a

0

x

[

sin^2

( (^) π a x

  • sin^2

2 π a x

  • 2 sin

( (^) π a x

sin

2 π a x

cos(3ωt)

]

dx

∫ (^) a

0

x sin^2

( (^) π a x

dx =

[

x^2 4

x sin

( (^2) π a x

4 π/a

cos

( (^2) π a x

8(π/a)^2

]∣∣

a

0

a^2 4

∫ (^) a

0

x sin^2

2 π a x

dx.

∫ (^) a

0

x sin

( (^) π a x

sin

2 π a x

dx =

∫ (^) a

0

x

[

cos

( (^) π a x

− cos

3 π a x

)]

dx

[

a^2 π^2 cos

( (^) π a x

ax π sin

( (^) π a x

a^2 9 π^2 cos

3 π a x

ax 3 π sin

3 π a x

)]a

0

[

a^2 π^2

cos(π) − cos(0)

a^2 9 π^2

cos(3π) − cos(0)

)]

a^2 π^2

8 a^2 9 π^2

∴ 〈x〉 =

a

[

a^2 4

a^2 4

16 a^2 9 π^2 cos(3ωt)

]

a 2

[

9 π^2 cos(3ωt)

]

Amplitude:

9 π^2

( (^) a 2

= 0.3603(a/2); angular frequency: 3 ω = 3 π^2 ℏ 2 ma^2

(d)

〈p〉 = m d〈x〉 dt =^ m

( (^) a 2

9 π^2

(− 3 ω) sin(3ωt) =

3 a sin(3ωt).

(e) You could get either E 1 = π^2 ℏ^2 / 2 ma^2 or E 2 = 2π^2 ℏ^2 /ma^2 , with equal probability P 1 = P 2 = 1/ 2.

So 〈H〉 = 1 2 (E 1 + E 2 ) =^5 π

4 ma^2 ; it’s the average of E 1 and E 2.

Problem 2.

From Problem 2.5, we see that

Ψ(x, t) = √^1 a e−iωt^

[

sin

( (^) π a x

  • sin

( (^2) π a x

e−^3 iωteiφ

]

|Ψ(x, t)|^2 = (^1) a

[

sin^2

( (^) π a x

  • sin^2

( (^2) π a x

  • 2 sin

( (^) π a x

sin

( (^2) π a x

cos(3ωt − φ)

]

©^ c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

CHAPTER 2. THE TIME-INDEPENDENT SCHR ODINGER EQUATION¨ 19

(c)

P 1 = |c 1 |^2 =^16 ·^6 π^4

(d)

〈H〉 =

|cn|^2 En =

π^4

π^2 ℏ^2 2 ma^2

π^2 / 8

48 ℏ^2

π^2 ma^2

π^2 8

6 ℏ^2

ma^2

Problem 2.

(a)

Ψ(x, 0) =

A, 0 < x < a/2; 0 , otherwise.

1 = A^2

∫ (^) a/ 2

0

dx = A^2 (a/2) ⇒ A =

a

(b) From Eq. 2.37,

c 1 = A

a

∫ (^) a/ 2

0

sin

( (^) π a x

dx =

a

[

a π cos

( (^) π a x

)] ∣∣

a/ 2

0

π

[

cos

( (^) π 2

− cos 0

]

π

P 1 = |c 1 |^2 = (2/π)^2 = 0. 4053.

Problem 2.

H^ ˆΨ(x, 0) = − ℏ

2 2 m

∂^2

∂x^2 [Ax(a − x)] = −A

ℏ^2

2 m

∂x (a − 2 x) = A

ℏ^2

m

Ψ(x, 0)∗^ HˆΨ(x, 0) dx = A^2

ℏ^2

m

∫ (^) a

0

x(a − x) dx = A^2

ℏ^2

m

a x^2 2 −^

x^3 3

a

0

= A^2

ℏ^2

m

a^3 2

a^3 3

a^5

ℏ^2

m

a^3 6

5 ℏ^2

ma^2

(same as Example 2.3).

©^ c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

20 CHAPTER 2. THE TIME-INDEPENDENT SCHR ODINGER EQUATION¨

Problem 2.

(a) Using Eqs. 2.47 and 2.59,

a+ψ 0 = √^1 2 ℏmω

−ℏ d dx

  • mωx

mω πℏ

e−^ mω^2 ℏ^ x 2

2 ℏmω

( (^) mω πℏ

) 1 / 4 [

mω 2 ℏ

2 x + mωx

]

e−^ mω 2 ℏ x 2 =

2 ℏmω

( (^) mω πℏ

2 mωxe−^ mω 2 ℏ x 2 .

(a+)^2 ψ 0 =

2 ℏmω

( (^) mω πℏ

2 mω

d dx

  • mωx

xe−^ mω 2 ℏ x 2

( (^) mω πℏ

) 1 / 4 [

1 − x mω 2 ℏ 2 x

  • mωx^2

]

e−^ mω 2 ℏ x 2 =

( (^) mω πℏ

) 1 / 4 (^2 mω ℏ x^2 − 1

e−^ mω 2 ℏ x 2 .

Therefore, from Eq. 2.67,

ψ 2 = √^1 2

(a+)^2 ψ 0 = √^1 2

( (^) mω πℏ

) 1 / 4 (^2 mω ℏ x^2 − 1

e−^ mω^2 ℏ^ x 2 .

(b)

(c) Since ψ 0 and ψ 2 are even, whereas ψ 1 is odd,

ψ 0 ∗ ψ 1 dx and

ψ∗ 2 ψ 1 dx vanish automatically. The only one we need to check is

ψ∗ 2 ψ 0 dx: ∫ ψ∗ 2 ψ 0 dx =

mω πℏ

−∞

2 mω ℏ x^2 − 1

e−^ mω ℏ x 2 dx

mω 2 πℏ

−∞

e−^ mω ℏ x 2 dx − 2 mω ℏ

−∞

x^2 e−^ mω ℏ x 2 dx

mω 2 πℏ

(√^

πℏ mω

2 mω ℏ

2 mω

πℏ mω

Problem 2.

(a) Note that ψ 0 is even, and ψ 1 is odd. In either case |ψ|^2 is even, so 〈x〉 =

x|ψ|^2 dx = 0. Therefore 〈p〉 = md〈x〉/dt = 0. (These results hold for any stationary state of the harmonic oscillator.) From Eqs. 2.59 and 2.62, ψ 0 = αe−ξ^2 /^2 , ψ 1 =

2 αξe−ξ^2 /^2. So n = 0:

〈x^2 〉 = α^2

−∞

x^2 e−ξ (^2) / 2 dx = α^2

−∞

ξ^2 e−ξ 2 dξ =

π

π 2

2 mω

©^ c2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the