Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Solução Lathi 2a ed - Sistemas Lineares - chapter 05, Resumos de Engenharia Elétrica

Solução dos exercicios do livro Sinais e Sistemas Lineares 2a ed, Lathi

Tipologia: Resumos

2015
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 03/12/2015

gustavo-ewald-2
gustavo-ewald-2 🇧🇷

5

(43)

7 documentos

1 / 90

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
Discount

Em oferta

Pré-visualização parcial do texto

Baixe Solução Lathi 2a ed - Sistemas Lineares - chapter 05 e outras Resumos em PDF para Engenharia Elétrica, somente na Docsity!

Chapter 5 Solutions 5.1-1. Given the fact that the time-domain signal is finite in duration, the region of con- vergence should include the entire 2-plane, except possibly z = 0 or z = 00: oo -n T non mn (1/2) X=DE os tn! = Di = Dial 1/0)º = "EEB Thus, . 1-2 X =——; Cc 0. (3) = RO tel> In this form, X(z) appears to have eight finite zeros and one finite pole. The eight zeros are the eight roots of unity, or z = e274/8 for k = (0,1,...,7). The apparent pole is at 2 = —1. However, there is also a zero 2 = —1 (k = 4) that cancels this pole. Thus, there are actually no finite poles and only seven finite zeros, z = elmk/8 for k = (0,1,2,3,5,6,7). MATLAB is used to plot the zeros in the complex plane; the unit circle is also plotted for reference. >> k = [0:3,5:7); zz = exp(j+24pi+k/8); >> ang = linspace(0,2+4pi,201); >> plot(real(zz), imag(zz), 'ko”,cos(ang) ,sin(ang),*k”); >> xlabel('Re(z)?); ylabel( Im(z)º); >> axis([-1.1 1.1 -1.1 1.1]); axis equal; grid; ima) a E - O 85 + [o Figure $5.1-1: Pole-zero plot for «fn] = (=1)"(ufn] — uln — 8) 512. (a) xo Dream 213 jm (b) 4º sinanuln] = 0 for all n. Hence x[]=0 (e) 4º cos nu Hence xt) = = is a sequence 0,41,0,-42,0,4,0, 7 Hence x() = (Err) (Ge Dao ) POA E . (e) "cos ZEufn] is a sequence 1,0,-2,0,48,0, 48,0, 98, AB xt) = 1-5+45 = be (O “o Of +( (5 =) = 5a bh 2 A 8 8 2 (6) > 2 6fn — 2] = ófn] + 46[n — 2) + 166[n — 4) + --- k=0 214 Therefore xtg=0"* (x) 0) xtH=5 Anata - Da EE) po 1 From the result in part (1) it follows that x [g] = rat = (dr = al/z 5.13. Note that the signal zfn) = nufn) has z-transform X(2) = Da Thus, DS on(-3/2)7" is easily found by evaluating the x(2) Do n(=3/2)"" = Plos2 7 o = Rc] =-B=-S. ia 6 3on(-3/7)7" = —5 = 04 n= 5.14. (a) ufn) — ufn — 2] = ófn] + 6[n —1) Hence | : uti)-ujn=2] es 14 1= EL za (b) 1 vPun- = (yr ufn] — ófn] = ô[n — 1)) Hence un — 9] 6 É e. Y 2-1) (e) elnj= (tuto) (o (ufa 1]+ eu tn) 216 Therefore 4 1 z Xd="D5+cz- (a) el = [6995 cos Ft) ufn — 1) = (2)"" cos Fun) — 6] Therefore A 0.25) 0.25(z — 1) ztz— E X==D>052405 !=77-0574025 (9) efu=nyufn= 1])=ny'u[n]-0=n9"un] Therefore Ez *ei= op (f) Because n(n — 1)(n—2)=0forn =0,1, and 2 «n]= n=0,1,or 2. Therefore n(n = Dn = 92%ufn = m] = n(n— 1)(n — 22)" fr] e fr) = (9 Un(n — Dn — 2)2"u [n)) and xtg= (0 [ES a] 6z E-)e- (g) ain] = (1) nun] + NES ] 1: (2n+1) sus i iba 4 q» dr I nim : ia 4 “el Raio É Using the entries in Sec. B.7-4, we obtain 22? 2 2 z (2-1)? 22-12 2-1 -23 40222 - 2 xt] 27 sn) = [0”-2Jutnl (a) (4-2 22-24 1 2 1 Xl = z o. 2 “z ata Hence zln)= ó[n— 1] -26fn— 2] + 6[n.— 3] (e) xt 2+3 o 9/2 72 O E-DE-DE- z-3 52 2 9% Xl = 57010 ';-at2203 5 9 en] = E -“2" + ser un) (9) Xtg -e+2 3 Z (G+DG-22 2+1 Multiply both sides by z and let z — oo. This yields 0=3+k+0 => k=—3 A z zo xd = 3 rat» cl) = [8(-1)"-3(2)" + 20(2)"]u fm) (8) XE) 142+008 1 k 2 > “E-o)G- 087 7-02"7-08' E-08) Multiply both sides by z and let z — oo. This yields O=14k=> k=-1 z z EA PEA z-02 z-08"“(-082 [ozr -(087 + nos] un 4 xt) k ztn) (h) We use pair 12e with 4= 1,B=2,0= 0.5, |y| = 1. Therefore r=Vi=2 p= a tn] = 20)" cos(E +oJeln]= 2cos(T +SJelnl 29 () 6) (9) 27º — 0.32 + 0.25 1 Az+B — CH r06:4055)) 2! 274062425 Multiply both sides by x and let z —» 00. This yields 2=1+4 => 4=1 Setting z = 1 on both sides yields 1.95 1+B iso ltTa > B=009 2(2-0.9) X =1+>D[D[—— — d=1+ 240071405 For the second fraction on right side, we use pair 12c with 4 =1, B = —0.9, a=0.3, and |] = 0.5. This yiclds xt 2(32 — 23) o 2 “(E-1(2-62+25) Multiply both sides by z and let z — oo. This yields 0=-244 => 4=2 Set z=0 on both sides to obtain 46 B =-2+; — B=4 (2204) 22-62 +25 For the second fraction on the right-hand side, we use pair 12c with 4 = 2, B=-4a=-3 andh|=5 r=>— B= cos (5) =0.927 0=tan” 2+ VE (sy cos(o soma - 0.25) | un] xt] 3.832 411.34 1 Az+B E + 2 (e-9(-52+25) 2-2 22052425 Multiply both sides by z and let z — oo. This yields 0=1+4 => A=— 220 Therefore [0] = 0, cl] =, el] = 2, 2 8]=37º,--:, and af) =nyºu[n) 5.1-8. (a) We can express xt), xp) xto) = xo) + HU AB z E: Let X,[2) and Xa[2] be the numerator and the denominator polynomials of X [2] with powers M and N, respectively. IFM = N, then the long division of Xn with Xa in power series of 2! yields [0] = a nonzero constant. IF N — M = 1, the term «[0) = 0, but 2(1), «/2], --- are generally nonzero. In general, EN -M = m, then the long division show that all z[0), z(1), --:, s[m — 1] are zero. Only the terms from «[m] on are generally nonzero. The difference N — M indicates that the first N — M samples of zfn] are zero. (b) In this case the first four samples of xfn] are zero. Hence N — M =a4. 521. (a) Xl]=1414& ++ 555. This sum can be found using the result in Sec. B.7. ,as (/gmi=-1 1-2" *Xd=qD1 CI=21 (b) cn) = uln-uln-m) Po mz o =2" XxX = ao Zac 5.29, alnj=6[n=1)+26/n-2]+36[n 3) +46[n-4]+35n —5]+26[n 6) +6[n =] Therefore 123 4,3,/2,1 Xe = ctatatatatata 28 +22 +92! +40 4322 42241 Z7 Alternate Method: alo) = ntufnj-ufn=5) +(-n+8)fuln-5]-uln— 9) = mufn)-2nufn- 5] +nuln-9]+8u[n 5] 8ufn—9] nun) = Mn — 5Jufn — 5] + Sufn— 5] Hm 9)ufn 9] +9ufn — 9] + 8uln = 5]- 8ufn —9) nufn)-2(n— 5Jufn—5]+(n—9ufn—9)-2ufn— 5] + ufn 9] | Therefore z 2z z 2z z x = copos toe zen! 2R-D SER [9 241 2(2-1)+(2—1)) 222 - 22 +41] Reader may verify that the two answers are identical. 5.23. (a) rêy"u [n] Repeated application of Eq. (5.21) to qu [n] > 5, vields = E YZ nyuln) > —s tl (2-9)? 2.m va(2 +49) ryuln) ++ bl (2-n? Lety=1 nu (n] > Er (b) Consider yufn) <> E z-7 Application of multiplication property to this pair yields nyufn) ++ e (+=) - TE One more application of multiplication property to this pair yields n a YZ o vdzto) veres cf [Ea] = ES «) Application of Eq. (5.21) to n2y"u [n) <=> JEE5P (found in part a) yields E-) d [e + 2] AP A dz +) da | (2-9)? (2-3 Now setting y = 1 in this result yields a(22 +42 +41) rêuln] = Toy (a) = auln)-ufn—m)) = a"uln)- aa xa = ár tão (e) afnj= ne Pufn-m) = (nom+me mu fam = Ma - me Paufn -m) 4 me reu -m] il Xe Therefore 1 He-y) vdz (2-v22+1) cos ru fn] + -1 <> +1 v2a22 — 2241) 5.2-6. Application of time reversal to pair 6 yiels guns E = bI + z+7 225 5.28. 5.2-9. (a) (b) (a) (d) o (a) (e (£ So afkl = 5 alkluln — m) k=0 k=0 Application of time-convolution property to this result yields Sel e extd Let z|n] = ófn], which yields X 2] = 1. Application of the result in part (a) vields >= In the time-domain, =Erayz 1s à convolution of two causal, decaying exponcn- tials. Thus, either plot 1 or plot 13 is possible. Using the IVT, the initial value is lim, n.os ovas = 1 Thus, 2 Plot 13 corresponds to . P (-0752 : ; 2-097/V3. ano sinusoid. 1 o In the time-domain, ESSE is a decaying sinusoid. Thus, either plot 8 or plot 9 is possible. Using the IVT, the initial value is lim: .oo 255, Dea = Thus, 2092/02 2 0.922+0.81 Plot 9 corresponds to Note that Di.g2 28 = 14272 42744278 4.278. Thus, the time-domain signal is ófn) + óin — 2] + 6[n — 4] + 6fn — 6] + ófn — 8) and 4 Plot 18 corresponds to >) k=0 By inspection, 455 corresponds to a unit step that is shifted to the right by five. Thus, Plot 10 corresponds to 7 —z Using synthetic division on = yields (272 4208 42719 +...) Im the time- domain, the first non-zero term therefore occurs at n = 2. Thus, E Plot 15 corresponds to — - In the time-domain, TES is a convolution of two causal, decaying exponen- tials. Thus, either plot 1 or plot 13 is possible. Using the IVT, the initial value 226 The 2-transform of the system equation is = (]+Mz-4Y [e] ! G-Yt = and -Mz Pz ve = ot EoDe-n rt Mo, P MS Z» Cozoy (G-WG-D) 2-7 v-llzoy 2-1 z P [a z Yi = nistA ul] = [ap + POD um r=9-1 The loan balance is zero for n = N, that is, y [N] = 0. Setting n = N in the above equation we obtain P(y" — “| 7 vin) = [my + “This yields rM . Because part (b) requires us to separate the response into zero-input and zero-state components, we shall start with the delay operator form of the equations, as vln] + 2ytn — 1) = «(n) “To determine the initial condition y[-1], we set n = O in this equation and substitute v(0) = 1 to obtain i+w=alj=e = u-il=(e-0/2 The z-transform of the delay form of equation yields vtg+2 [Era + SD -—&, Rearranging the terms yields sfe-ae cs z 2+2 z-e “The term (1 — e) on the right-hand side is due to the initial condition, and hence rep- resents the zero-input component. the second term on the right-hand side represents the zero-state component of the response. Thus 228 5.3-3, 1-e 2e? e + + Z42 Qe+DE+3) Qe+ilz-e)) Hence 2 26 z e z z + z+2'2e+12z+2 2e4+1z-e “The first term on the right-hand side is the zero-input component and the remaining two terms represent the zero-state component. Thus ylg=(1-0) 2e? 2e+1 ul (-2)"uln) + vin) = (1-2 ufn) + zero-input comp < e 2e+1 zero-state comp. The total response is 1 9 pet) util = sm [t+ MD" +e Jin (a) 'The system equation in delay form is 2yto) = 3yln = 1) + vln = 2] = 4efn] = Se (n 1] Also st) es YE vh-oje do yln-2] + YE] + en) es Xbl= ope 2 z— 0.25 0.25 The z-transform of the equation is , 3 Io 4 3 Wt-Vi+aridtl=co 2-0257 or , 1 (2-*+5)rta and re a(82- 2.75) 2 — (22-32+1)(2-0.25) e(82 — 2.75) = —0.5)(z— 1)(z— 0.25) 5/2 1/3 4/3 z-1/2 uti) = [5 +i(05p - 360257] un) - [riem - Sta") ubo and 5.35. (a) (b) o 322+12252-3.75 46/3 4/3 25/2 2(2-0.25)(z-1)(2-0.5) 2-1 2-0.25 2-05 4 2 4 2 25 sz Ye = 7501735005 27005 vtd = [ System equation in delay form is 4yln+4y[n=]+yn-J=2[n-1] Also vb) + YE) ubomes iv] ub-ges Syd (etal=0) 1 g[n—1] += —— Z- gn) > 1 The z-transform of the system equation is artiririe Srt+= (1) trirtly ço 2rs (2) and re o 2-2) REC zZ 0 4z-1(24+2+0.25) 4(z-1)(2+0 1[4/9 13/9 5/6 i&-: 505 * (4 Ss] 4 1/4 2 13 2 5 z YH = ali oras totraspl vn) = [5 - (cos = Sgnt-03)"| ut To find the zero-input and the zero-state components, we observe that the only term arising because of the initial conditions is 1 on the left-hand side of Eq. (1). Hence, we can rewrite Eq. (2) with explicit zero-input and zero-state components as 422 +47+1 2 Yld="1+5 1 z-1 Here the term —1 on the right-hand side represents the zero-input terms and the second term on the right-hand side represents the zero-state component. Rearranging the equation, we obtain a = FERN [ + + -. z de ros "dE DE+05 Hero Memo zero-input zero-state 1/4 N 1/8 4 1/9 9 1/12 = 2405 (+05)? 2-1 2405 (2+0.5) zero-input zero-state Therefore (1/92 (2 | (1/92 (/9z | 0/Dz yYt]= — -os tros! 2-1 2405" (+05 zero-input zero-state Jon MOS 1 (05 n(-0.5)" vin] =4 (0.5) 1 +9 E) ç uln) zero-input zero-state (c) The terms which vanish as n — oo correspond to the transient component and the terms which do not vanish correspond to the steady-state component. Hence Sos êntcos] ufnj+ Sufn) Nam steady-state transient 5.3-6. The system in delay form is vin) =3yln= 1] +2yln=2]=2[n-1] Also vt) ++ YE] voe irtd+? vin-2 += Syt+2+3 cn) + XE aln= 1) + AXE] xt]= The z-transform of the system equation is rtd-s brta+3 eafartisê+s] 3 2 4 1 (1-Sa)rei=S+5 = 2-3) Ye -32+12 o -32+12 3 3/2 = É El&A+DdE- E DE-DE-3 = t7-3 232