




Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Solucionário Livro Eletrônica de Potência (cap: 2,3,4) Daniel Hart
Tipologia: Resumos
1 / 8
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Em oferta
3/20/ 10-1) a) For the elementary MOSFET drive circuit, losses can be determined from the energy absorbed by the transistor. In Probe, the integral of instantaneous power is obtained by entering the expression S(W(M1)) to get the energy absorbed by the transistor. For turn- off losses, restrict the data to 2.5 μs to 4.3 μs. The energy absorbed is 132 μJ. For turn- on losses, restrict the data to 5 μs to 5.6 μs. The energy absorbed by the MOSFET is 53.3 μJ. Power is determined as For the emitter-follower drive circuit restrict the data to 2.5 μs to 2.9 μs, giving 21.3 μJ for turn-off. Restrict the data to 5 μs to 5.3 μs, giving 12.8 μJ for turn-on. Power is then b) For the first circuit, peak gate current is 127 mA, average gate current is zero, and rms gate current is 48.5 mA. For the second circuit, peak gate current is 402 mA (and - mA), average gate current is zero, and rms gate current is 109 mA. 10-2) For R 1 = 75 Ω, toff ≈ 1.2 μs, ton ≈ 0.6 μs, and PMOS ≈ 30 W. For R 1 = 50 Ω, toff ≈ 0.88 μs, ton ≈ 0.42 μs, and PMOS ≈ 22 W. For R 1 = 25 Ω, toff ≈ 0.54 μs, ton ≈ 0.24 μs, and PMOS ≈ 14 W. Reducing drive circuit resistance significantly reduces the switching time and power loss for the MOSFET.
The values of Vi, R 1 , R 2 , and C must be selected for the BJT base drive circuit. First, select Vi: let Vi=20 V. then, the value of R 1 is determined from the initial current spike requirement. Solving for R 1 in Eq. 10-1, The steady-state base current in the on state determines R 2. From Eq. 10-2, The value of C is determined from the required time constant. For a 50% duty ratio at 100 kHz, the transistor is on for 5 μs. Letting the on time for the transistor be five time constants, τ = 1μs. From Eq. 10-3, 10-4) The values of Vi, R 1 , R 2 , and C must be selected for the BJT base drive circuit. First, select Vi; let Vi = 20 V. then, the value of R 1 is determined from the initial current spike requirement. Solving for R 1 in Eq. 10-1, The steady-state base current in the on state determines R 2. From Eq. 10-2,
Snubber loss is determined by the amount of stored energy in the capacitor that will be transferred to the snubber resistor: 10-6) Switch current is expressed as Capacitor voltage at t = tf = 0.5 μs would be 100 volts, which is greater than Vs. Therefore, the above equations are valid only until vC reaches Vs: For tx < t < tf, b) With tx < tf, the waveforms are like those of Fig. 10.12(b). Equation 10-12 is not valid here because tx < tf. Switch power is determined from Snubber loss is determined by the amount of stored energy in the capacitor that will be transferred to the snubber resistor: