Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Soluções do Capítulo 11 do Livro Shigley's Mechanical Engineering Design, 10ª Edição, Exercícios de Engenharia Mecânica

Projeto de maquinas Solution shigley-ed_10

Tipologia: Exercícios

2020

Compartilhado em 17/05/2020

guilherme-henrique-g89
guilherme-henrique-g89 🇧🇷

5

(17)

10 documentos

1 / 28

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Shigley’s MED, 10
th
edition Chapter 11 Solutions, Page 1/28
Chapter 11
11-1 For the deep-groove 02-series ball bearing with R = 0.90, the design life x
D
, in multiples
of rating life, is
(
)
6
10
60 25000 350
60
525 .
10
D D D
D
R
L n
x Ans
L L
= = = =
L
The design radial load is
(
)
1.2 2.5 3.0 kN
D
F= =
Eq. (11-9):
( ) ( )
1/3
10 1/1.483
525
3.0 0.02 4.459 0.02 ln 1/ 0.9
C
=
+
C
10
= 24.3 kN Ans.
Table 11-2: Choose an 02-35 mm bearing with C
10
= 25.5 kN. Ans.
Eq. (11-21):
( )
1.483
3
525 3 / 25.5 0.02
exp 0.920 .
4.459 0.02
= =
______________________________________________________________________________
11-2
For the angular-contact 02-series ball bearing as described, the rating life multiple is
(
)
6
10
60 40000 520
60
1248
10
D D D
D
R
L n
xL L
= = = =
L
The design radial load is
(
)
1.4 725 1015 lbf 4.52 kN
D
F= = =
Eq. (11-9):
( ) ( )
1/3
10 1/1.483
1248
1015 0.02 4.459 0.02 ln 1/ 0.9
10 930 lbf 48.6 kN
C
=
+
= =
Table 11-2: Select an 02-60 mm bearing with C
10
= 55.9 kN. Ans.
Eq. (11-21):
( )
1.483
3
1248 4.52 / 55.9 0.02
exp 0.945 .
4.439
R Ans
= =
______________________________________________________________________________
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c

Pré-visualização parcial do texto

Baixe Soluções do Capítulo 11 do Livro Shigley's Mechanical Engineering Design, 10ª Edição e outras Exercícios em PDF para Engenharia Mecânica, somente na Docsity!

th

Chapter 11

11-1 For the deep-groove 02-series ball bearing with R = 0.90, the design life x D

, in multiples

of rating life, is

6

10

D D D

D

R

L n

x Ans

L L

L

The design radial load is

1.2 2.5 3.0 kN D

F = =

Eq. (11-9):

1/

10 1/1.

0.02 4.459 0.02 ln 1/ 0.

C

C

10 = 24.3 kN Ans.

Table 11-2: Choose an 02-35 mm bearing with C 10 = 25.5 kN. Ans.

Eq. (11-21):

3

exp 0..

R Ans

______________________________________________________________________________

11-2 For the angular-contact 02-series ball bearing as described, the rating life multiple is

6

10

D D D

D

R

L n

x

L L

L

The design radial load is

1.4 725 ( ) 1015 lbf 4.52 kN

D

F = = =

Eq. (11-9):

1/

10 1/1.

0.02 4.459 0.02 ln 1/ 0.

10 930 lbf 48.6 kN

C

Table 11-2: Select an 02-60 mm bearing with C 10

= 55.9 kN. Ans.

Eq. (11-21):

3

exp 0..

R Ans

______________________________________________________________________________

th

11-3 For the straight-roller 03-series bearing selection, x D

= 1248 rating lives from Prob. 11-

solution.

1.4 2235 3129 lbf 13.92 kN D

F = = =

3/

10

13.92 118 kN

C

Table 11-3: Select an 03-60 mm bearing with C 10

= 123 kN. Ans.

Eq. (11-21):

10/

exp 0..

R Ans

______________________________________________________________________________

11-4 The combined reliability of the two bearings selected in Probs. 11-2 and 11-3 is

R = 0.945 0.917 =0.867 Ans.

We can choose a reliability goal of 0.90 = 0.95for each bearing. We make the

selections, find the existing reliabilities, multiply them together, and observe that the

reliability goal is exceeded due to the roundup of capacity upon table entry.

Another possibility is to use the reliability of one bearing, say R 1

. Then set the reliability

goal of the second as

2

1

R

R

or vice versa. This gives three pairs of selections to compare in terms of cost, geometry

implications, etc.

______________________________________________________________________________

11-5 Establish a reliability goal of 0.90 = 0.95for each bearing. For an 02-series angular

contact ball bearing,

1/

10 1/1.

0.02 4.439 ln 1/ 0.

12822 lbf 57.1 kN

C

Select an 02-65 mm angular-contact bearing with C 10 = 63.7 kN.

3

exp 0.

A

R

th

11-9 F

D

= 800 lbf, Λ D

= 12 000 hours, n D

= 350 rev/min, R = 0.

Eq. (11-3):

1/ 1/

10 6

800 5050 lbf

a

D D

D

R

n

C F Ans

L

L

______________________________________________________________________________

11-10 F

D

= 4 kN, Λ D

= 8 000 hours, n D

= 500 rev/min, R = 0.

Eq. (11-3):

1/ 1/

10 6

4 24.9 kN

a

D D

D

R

n

C F Ans

L

L

______________________________________________________________________________

11-11 F

D

= 650 lbf, n D

= 400 rev/min, R = 0.

D = (5 years)(40 h/week)(52 week/year) = 10 400 hours

Assume an application factor of one. The multiple of rating life is

6

D

D

R

L

x

L

Eq. (11-9):

1/

10 1/1.

0.02 4.439 ln 1/ 0.

C

= 4800 lbf Ans.

______________________________________________________________________________

11-12 F

D

= 9 kN, L D

8

rev, R = 0.

Assume an application factor of one. The multiple of rating life is

8

6

D

D

R

L

x

L

Eq. (11-9):

1/

10 1/1.

0.02 4.439 ln 1/ 0.

C

= 69.2 kN Ans.

______________________________________________________________________________

11-13 F

D

= 11 kips, Λ D

= 20 000 hours, n D

= 200 rev/min, R = 0.

Assume an application factor of one. Use the Weibull parameters for Manufacturer 2 in

Table 11-6.

The multiple of rating life is

th

6

D

D

R

L

x

L

Eq. (11-9):

1/

10 1/1.

0.02 4.439 ln 1/ 0.

C

= 113 kips Ans.

______________________________________________________________________________

11-14 From the solution to Prob. 3-68, the ground reaction force carried by the bearing at C is

R

C

= F

D = 178 lbf. Use the Weibull parameters for Manufacturer 2 in Table 11-6.

6

D

D

R

L

x

L

Eq. (11-10):

1/

10 1/

0 0

a

D

f D b

D

x

C a F

x θ x R

1/

10 1/1.

2590 lbf.

C

Ans

______________________________________________________________________________

11-15 From the solution to Prob. 3-69, the ground reaction force carried by the bearing at C is

R

C

= F

D = 1.794 kN. Use the Weibull parameters for Manufacturer 2 in Table 11-6.

6

D

D

R

L

x

L

Eq. (11-10):

1/

10 1/

0 0

a

D

f D b

D

x

C a F

x θ x R

1/

10 1/1.

26.1 kN.

C

Ans

______________________________________________________________________________

11-16 From the solution to Prob. 3-70, R Cz = –327.99 lbf, R Cy = –127.27 lbf

1/ 2 2

327.99 127.27 351.8 lbf

C D

R F

Use the Weibull parameters for Manufacturer 2 in Table 11-6.

6

D

D

R

L

x

L

th

11-19 From the solution to Prob. 3-79, R Az = 54.0 lbf, R Ay = 140 lbf

1/ 2 2

54.0 140 150.1 lbf A D

R = F = + =

Use the Weibull parameters for Manufacturer 2 in Table 11-6. The design speed is equal

to the speed of shaft AD ,

280 560 rev/min

F

D i

C

d

n n

d

6

D

D

R

L

x

L

Eq. (11-10):

1/

10 1/

0 0

a

D

f D b

D

x

C a F

x θ x R

3/

10 1/1.

1320 lbf.

C

Ans

______________________________________________________________________________

11-20 (a) 3 kN, 7 kN, 500 rev/min, 1. a r D

F = F = n = V =

From Table 11-2, with a 65 mm bore, C 0

= 34.0 kN.

F

a

/ C

0

From Table 11-1, 0.28 ≤ e ≤ 3.0.

a

r

F

VF

Since this is greater than e , interpolating Table 11-1 with F a

/ C

0 = 0.088, we obtain

X

2

= 0.56 and Y 2

Eq. (11-12): ( 0.56 )( 1.2) ( 7 ) ( 1.53) ( 3 ) 9.29 kN

e i r i a

F = X VF + Y F = + = Ans.

F

e

> F

r so use F e

(b) Use Eq. (11-10) to determine the necessary rated load the bearing should have to

carry the equivalent radial load for the desired life and reliability. Use the Weibull

parameters for Manufacturer 2 in Table 11-6.

6

D

D

R

L

x

L

th

Eq. (11-10):

1/

10 1/

0 0

a

D

f D b

D

x

C a F

x θ x R

1/

10 1/1.

73.4 kN

C

From Table 11-2, the 65 mm bearing is rated for 55.9 kN, which is less than the

necessary rating to meet the specifications. This bearing should not be expected to meet

the load, life, and reliability goals. Ans.

______________________________________________________________________________

11-21 (a) 2 kN, 5 kN, 400 rev/min, 1 a r D

F = F = n = V =

From Table 11-2, 30 mm bore, C 10

= 19.5 kN, C 0

= 10.0 kN

F

a

/ C

0

From Table 11-1, 0.34 ≤ e ≤ 0.38.

a

r

F

VF

Since this is greater than e , interpolating Table 11-1, with F a

/ C

0 = 0.2, we obtain X 2

0.56 and Y 2

Eq. (11-12):

0.56 1 5 1.27 2 5.34 kN e i r i a

F = X VF + Y F = + = Ans.

F

e

> F

r

so use F e

(b) Solve Eq. (11-10) for x D

1/ 10

0 0

a

b

D D

f D

C

x x x R

a F

θ

3

D

x

D

x =

6

D D D

D

R

n L

x

L

L

6 6

444 h.

D

D

D

x

Ans

n

L = = =

th

F

a

/ C

0

Table 11-1: Again, 0.22 ≤ e ≤ 0.

a

r

F

e

VF

Interpolate Table 11-1 with F a

/ C

0 = 0.032 to obtain X 2 = 0.56 and Y 2

Eq. (11-12): 0.56(1)8 1.95(2) 8.38 > e r

F = + = F

Eq. (11-10):

1/

10 1/1.

1 8.38 86.4 kN

C

The 90 mm bore is acceptable. Ans.

______________________________________________________________________________

8

8 kN, 3 kN, 1.2, 0.9, 10 rev r a D

F = F = V = R = L =

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.

Eq. (11-12):

0.56 1.2 8 1.63 3 10.3 kN e

F = + =

e r

F > F

Eq. (11-3):

1/ 1/ 8

10 6

10.3 47.8 kN

a

D

e

R

L

C F

L

From Table 11-2, try 60 mm with C 10

= 47.5 kN, C 0

= 28.0 kN

Iterate the previous process:

F

a

/ C

0

Table 11-1: 0.28 ≤ e ≤ 0.

a

r

F

e

VF

Interpolate Table 11-1 with F a

/ C

0 = 0.107 to obtain X 2 = 0.56 and Y 2

Eq. (11-12):

0.56 1.2 8 1.46 3 9.76 kN > e r

F = + = F

Eq. (11-3):

1/

8

10 6

9.76 45.3 kN

C

From Table 11-2, we have converged on the 60 mm bearing. Ans.

______________________________________________________________________________

11-25 10 kN, 5 kN, 1, 0. r a

F = F = V = R =

Use the Weibull parameters for Manufacturer 2 in Table 11-6.

th

6

D

D

R

L

x

L

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.

Eq. (11-12):

0.56 1 10 1.63 5 13.75 kN e

F = + =

F

e

> F

r

, so use F e

as the design load.

Eq. (11-10):

1/

10 1/

0 0

a

D

f D b

D

x

C a F

x θ x R

1/

10 1/1.

1 13.75 97.4 kN

C

From Table 11-2, try 95 mm bore with C 10

= 108 kN, C 0

= 69.5 kN

Iterate the previous process:

F

a

/ C

0

Table 11-1: 0.27 ≤ e ≤ 0.

a

r

F

e

VF

Interpolate Table 11-1 with F a

/ C

0

= 0.072 to obtain X 2

= 0.56 and Y 2

= 1.62 B 1.

Since this is where we started, we will converge back to the same bearing. The 95 mm

bore meets the requirements. Ans.

______________________________________________________________________________

11-26 9 kN, 3 kN, 1.2, 0. r a

F = F = V = R =

Use the Weibull parameters for Manufacturer 2 in Table 11-6.

8

6

D

D

R

L

x

L

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.

Eq. (11-12):

0.56 1.2 9 1.63 3 10.9 kN e

F = + =

F

e

> F

r

, so use F e

as the design load.

Eq. (11-10):

1/

10 1/

0 0

a

D

f D b

D

x

C a F

x θ x R

th

6

D

D

R

L

x

L

Eq. (11-10):

1/

10 1/1.

C

= 4837 lbf =4.84 kips Ans.

(b) Results will vary depending on the specific bearing manufacturer selected. A general

engineering components search site such as www.globalspec.com might be useful as

a starting point.

______________________________________________________________________________

11-29 (a) 900 rev/min, 12 kh, 0.98, 1. D D f

n = L = R = a =

From Prob. 3-73, R Cy = 8.319 kN, R Cz = –10.830 kN.

1/

2 2

8.319 10.830 13.7 kN C D

R F

= = + − =

6

D

D

R

L

x

L

Eq. (11-10):

1/

10 1/1.

1.2 13.7 204 kN.

C Ans

(b) Results will vary depending on the specific bearing manufacturer selected. A general

engineering components search site such as www.globalspec.com might be useful as

a starting point.

______________________________________________________________________________

11-30 (a) 900 rev/min, 12 kh, 0.98, 1. D D f

n = L = R = a =

From Prob. 3-73, R Oy

= 5083 N, R

Oz

= 494 N.

1/ 2 2

5083 494 5106 N 5.1 kN C D

R = F = + = =

6

D

D

R

L

x

L

Eq. (11-10):

1/

10 1/1.

1.2 5.1 76.1 kN.

C Ans

(b) Results will vary depending on the specific bearing manufacturer selected. A general

engineering components search site such as www.globalspec.com might be useful as

a starting point.

______________________________________

________________________________

________

11-31 Assume concentrated forces as shown.

th

8 28 224 lbf z

P = =

8 35 280 lbf

y

P = =

T = 224 2 = 448 lbf in⋅

448 1.5 cos 20 0

x

Σ T = − + F =

o

318 lbf

F = =

5.75 11.5 14.25 sin 20 0

z y

O y A

Σ M = P + R − F =

o

y

A

+ R − =

5.24 lbf

y

A

R = −

5.75 11.5 14.25 cos 20 0

y z

O z A

Σ M = − PRF =

o

z

A

− − R − =

1/ 2 2

482 lbf; 482 5.24 482 lbf

z

A A

R R

cos 20 0

z z z

O z A

Σ F = R + P + R + F =

o

z

O

R + − + =

40.9 lbf

z

O

R = −

sin 20 0

y y y

O y A

Σ F = R + P + R − F =

o

y

O

R + − − =

166 lbf

y

O

R = −

1/ 2 2

40.9 166 171 lbf O

R

So the reaction at A governs.

Reliability Goal: 0.92 =0.

1.2 482 578 lbf D

F = =

6

35 000 350 60 / 10 735 D

x = =

1/

10 1/1.

0.02 4.459 0.02 ln 1/ 0.

6431 lbf 28.6 kN

C

From Table 11-2, a 40 mm bore angular contact bearing is sufficient with a rating of

31.9 kN. Ans.

th

T = (270 − 50) = ( P

1

− P

2

= ( P

1

− 0.15 P

1

P

1

= 310.6 N,

P

2

= 0.15 (310.6) = 46.6 N

P

1

+ P

2

= 357.2 N 357.2 sin 45 252.6 N

y z

A A

F = = = F

o

850 300(252.6) 0 89.2 N

z y y

O E E

M = R + = ⇒ R = −

252.6 89.2 0 163.4 N

y y y

O O

F = − + R = ⇒ R = −

850 700(320) 300(252.6) 0 174.4 N

y z z

O E E

M = − R − + = ⇒ R = −

174.4 320 252.6 0 107 N

z z z

O O

F = − + − + R = ⇒ R =

2 2

2 2

163.4 107 195 N

89.2 174.4 196 N

O

E

R

R

The radial loads are nearly the same at O and E. We can use the same bearing at both

locations.

6

D

x = =

Eq. (11-9):

1/

10 1/1.

1 0.196 5.7 kN

0.02 4.439 ln 1/ 0.

C

From Table 11-2, select an 02-12 mm deep-groove ball bearing with a basic load rating

of 6.89 kN. Ans.

______________________________________________________________________________

11-34 R = 0.96 =0.

T = 12(240 cos 20 ) = 2706 lbf ⋅in

o

498 lbf

6 cos 25

F = =

o

In xy -plane:

z y

O C

Σ M = − − + R =

181 lbf

y

C

R =

th

82.1 210 181 111.1 lbf

y

O

R = + − =

In xz -plane:

y z

O C

Σ M = − − R =

236 lbf

z

C

R = −

226 451 236 11 lbf

z

O

R = − + =

1/ 2 2 2

111.1 11 112 lbf. O

R = + = Ans

1/ 2 2 2

181 236 297 lbf. C

R = + = Ans

6

D

x = =

1/

10 1/1.

0.02 4.439 ln 1/ 0.

1860 lbf 8.28 kN

O

C

1/

10 1/1.

0.02 4.439 ln 1/ 0.

4932 lbf 21.9 kN

C

C

Bearing at O : Choose a deep-groove 02-17 mm. Ans.

Bearing at C : Choose a deep-groove 02-35 mm. Ans.

______________________________________________________________________________

11-35 Shafts subjected to thrust can be constrained by bearings, one of which supports the

thrust. The shaft floats within the endplay of the second (roller) bearing. Since the thrust

force here is larger than any radial load, the bearing absorbing the thrust (bearing A ) is

heavily loaded compared to bearing B. Bearing B is thus likely to be oversized and may

not contribute measurably to the chance of failure. If this is the case, we may be able to

obtain the desired combined reliability with bearing A having a reliability near 0.99 and

bearing B having a reliability near 1. This would allow for bearing A to have a lower

capacity than if it needed to achieve a reliability of 0.99. To determine if this is the

case, we will start with bearing B.

Bearing B (straight roller bearing)

6

D

x = =

1/ 2 2 2

36 67 76.1 lbf 0.339 kN r

F = + = =

Try a reliability of 1 to see if it is readily obtainable with the available bearings.

th

Select an 02-90 mm angular-contact ball bearing. Ans.

______________________________________________________________________________

11-36 We have some data. Let’s estimate parameters b and θ from it. In Fig. 11-5, we will use

line AB. In this case, B is to the right of A.

For F = 18 kN,

6 1

x = =

This establishes point 1 on the R = 0.90 line.

The R = 0.20 locus is above and parallel to the R = 0.90 locus. For the two-parameter

Weibull distribution, x 0 = 0 and points A and B are related by [see Eq. (11-8)]:

1/

ln 1/ 0.

b

A

x = θ  

 

1/

ln 1/ 0.

b

B

x = θ  

 

and x B / x A is in the same ratio as 600/115. Eliminating θ ,

ln ln 1/ 0.20 / ln 1/ 0.

ln 600 /

b Ans

Solving for θ in Eq. (1),

1/1.65 1/1.

ln 1/ ln 1/ 0.

A

A

x

Ans

R

θ = = =

th

Therefore, for the data at hand,

exp

x

R

Check R at point B : x B

exp 0.

R

Note also, for point 2 on the R = 0.20 line,

2

log 5.217 log 1 log log 13.

m

− = x

2

m

x =

______________________________________________________________________________

11-37 This problem is rich in useful variations. Here is one.

Decision : Make straight roller bearings identical on a given shaft. Use a reliability goal of

1/

Shaft a

1/

2 2

239 111 264 lbf 1.175 kN

r

A

F = + = =

1/

2 2

502 1075 1186 lbf 5.28 kN

r

B

F = + = =

Thus the bearing at B controls.

6

D

x = =

1/1.

0.02 + 4.439 ln 1/ 0.9983  =0.080 26

 

10

1.2 5.28 97.2 kN

C

Select an 02-80 mm with C 10

= 106 kN. Ans.

Shaft b

1/

2 2

874 2274 2436 lbf or 10.84 kN

r

C

F = + =

1/ 2 2

393 657 766 lbf or 3.41 kN

r

D

F = + =

The bearing at C controls.