Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Solutions to the exercises from T.M.Apostol - Calculus, vol.1, Exercícios de Engenharia Informática

Exercícios Resolvidos Do Apostol

Tipologia: Exercícios

2011

Compartilhado em 05/04/2011

francisco-bezerra-12
francisco-bezerra-12 🇧🇷

2

(1)

3 documentos

1 / 145

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Solutions to the exercises from T.M.Apostol,
Calculus, vol. 1 assigned to doctoral students in
years 2002-2003
andrea battinelli
dipartimento di scienze matematiche e informatiche “R.Magari”
dell’università di Siena
via del Capitano 15 - 53100 Siena
tel: +39-0577-233769/02 fax: /01/30
e-mail: battinelli @unisi.it
web: http//www.batman vai li
December 12, 2005
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Solutions to the exercises from T.M.Apostol - Calculus, vol.1 e outras Exercícios em PDF para Engenharia Informática, somente na Docsity!

Solutions to the exercises from T.M.Apostol,

Calculus, vol. 1 assigned to doctoral students in

years 2002-

andrea battinelli

dipartimento di scienze matematiche e informatiche “R.Magari”

dell’università di Siena

via del Capitano 15 - 53100 Siena

tel: +39-0577-233769/02 fax: /01/

e-mail: battinelli @unisi.it

web: http//www.batman vai li

December 12, 2005

2

10 CONTENTS

Part I

Volume 1

  • I Volume
  • 1 Chapter
  • 2 Chapter
  • 3 Chapter
  • 4 Chapter
  • 5 Chapter
  • 6 Chapter
  • 7 Chapter
  • 8 Chapter
  • 9 Chapter
  • 10 Chapter
  • 11 Chapter
  • 12 Vector algebra
    • 12.1 Historical introduction
    • 12.2 The vector space of n-tuples of real numbers
    • 12.3 Geometric interpretation for n ≤
    • 12.4 Exercises
      • 12.4.1 n. 1 (p. 450)
      • 12.4.2 n. 2 (p. 450)
      • 12.4.3 n. 3 (p. 450)
      • 12.4.4 n. 4 (p. 450)
      • 12.4.5 n. 5 (p. 450)
      • 12.4.6 n. 6 (p. 451)
    • 12.4.7 n. 7 (p. 451) 4 CONTENTS
    • 12.4.8 n. 8 (p. 451)
    • 12.4.9 n. 9 (p. 451)
    • 12.4.10 n. 10 (p. 451)
    • 12.4.11 n. 11 (p. 451)
    • 12.4.12 n. 12 (p. 451)
  • 12.5 The dot product
  • 12.6 Length or norm of a vector
  • 12.7 Orthogonality of vectors
  • 12.8 Exercises
    • 12.8.1 n. 1 (p. 456)
    • 12.8.2 n. 2 (p. 456)
    • 12.8.3 n. 3 (p. 456)
    • 12.8.4 n. 5 (p. 456)
    • 12.8.5 n. 6 (p. 456)
    • 12.8.6 n. 7 (p. 456)
    • 12.8.7 n. 10 (p. 456)
    • 12.8.8 n. 13 (p. 456)
    • 12.8.9 n. 14 (p. 456)
    • 12.8.10 n. 15 (p. 456)
    • 12.8.11 n. 16 (p. 456)
    • 12.8.12 n. 17 (p. 456)
    • 12.8.13 n. 19 (p. 456)
    • 12.8.14 n. 20 (p. 456)
    • 12.8.15 n. 21 (p. 457)
    • 12.8.16 n. 22 (p. 457)
    • 12.8.17 n. 24 (p. 457)
    • 12.8.18 n. 25 (p. 457)
  • 12.9 Projections. Angle between vectors in n-space
  • 12.10 The unit coordinate vectors
  • 12.11 Exercises
    • 12.11.1 n. 1 (p. 460)
    • 12.11.2 n. 2 (p. 460)
    • 12.11.3 n. 3 (p. 460)
    • 12.11.4 n. 5 (p. 460)
    • 12.11.5 n. 6 (p. 460)
    • 12.11.6 n. 8 (p. 460)
    • 12.11.7 n. 10 (p. 461)
    • 12.11.8 n. 11 (p. 461)
    • 12.11.9 n. 13 (p. 461)
    • 12.11.10 n. 17 (p. 461)
  • 12.12 The linear span of a finite set of vectors
  • CONTENTS
    • 12.13 Linear independence
    • 12.14 Bases
    • 12.15 Exercises
      • 12.15.1 n. 1 (p. 467)
      • 12.15.2 n. 3 (p. 467)
      • 12.15.3 n. 5 (p. 467)
      • 12.15.4 n. 6 (p. 467)
      • 12.15.5 n. 7 (p. 467)
      • 12.15.6 n. 8 (p. 467)
      • 12.15.7 n. 10 (p. 467)
      • 12.15.8 n. 12 (p. 467)
      • 12.15.9 n. 13 (p. 467)
      • 12.15.10 n. 14 (p. 468)
      • 12.15.11 n. 15 (p. 468)
      • 12.15.12 n. 17 (p. 468)
      • 12.15.13 n. 18 (p. 468)
      • 12.15.14 n. 19 (p. 468)
      • 12.15.15 n. 20 (p. 468)
    • 12.16 The vector space Vn (C) of n-tuples of complex numbers
    • 12.17 Exercises
  • 13 Applications of vector algebra to analytic geometry
    • 13.1 Introduction
    • 13.2 Lines in n-space
    • 13.3 Some simple properties of straight lines
    • 13.4 Lines and vector-valued functions
    • 13.5 Exercises
      • 13.5.1 n. 1 (p. 477)
      • 13.5.2 n. 2 (p. 477)
      • 13.5.3 n. 3 (p. 477)
      • 13.5.4 n. 4 (p. 477)
      • 13.5.5 n. 5 (p. 477)
      • 13.5.6 n. 6 (p. 477)
      • 13.5.7 n. 7 (p. 477)
      • 13.5.8 n. 8 (p. 477)
      • 13.5.9 n. 9 (p. 477)
      • 13.5.10 n. 10 (p. 477)
      • 13.5.11 n. 11 (p. 477)
      • 13.5.12 n. 12 (p. 477)
    • 13.6 Planes in euclidean n-spaces
    • 13.7 Planes and vector-valued functions
    • 13.8 Exercises
    • 13.8.1 n. 2 (p. 482) 6 CONTENTS
    • 13.8.2 n. 3 (p. 482)
    • 13.8.3 n. 4 (p. 482)
    • 13.8.4 n. 5 (p. 482)
    • 13.8.5 n. 6 (p. 482)
    • 13.8.6 n. 7 (p. 482)
    • 13.8.7 n. 8 (p. 482)
    • 13.8.8 n. 9 (p. 482)
    • 13.8.9 n. 10 (p. 483)
    • 13.8.10 n. 11 (p. 483)
    • 13.8.11 n. 12 (p. 483)
    • 13.8.12 n. 13 (p. 483)
    • 13.8.13 n. 14 (p. 483)
  • 13.9 The cross product
  • 13.10 The cross product expressed as a determinant
  • 13.11 Exercises
    • 13.11.1 n. 1 (p. 487)
    • 13.11.2 n. 2 (p. 487)
    • 13.11.3 n. 3 (p. 487)
    • 13.11.4 n. 4 (p. 487)
    • 13.11.5 n. 5 (p. 487)
    • 13.11.6 n. 6 (p. 487)
    • 13.11.7 n. 7 (p. 488)
    • 13.11.8 n. 8 (p. 488)
    • 13.11.9 n. 9 (p. 488)
    • 13.11.10 n. 10 (p. 488)
    • 13.11.11 n. 11 (p. 488)
    • 13.11.12 n. 12 (p. 488)
    • 13.11.13 n. 13 (p. 488)
    • 13.11.14 n. 14 (p. 488)
    • 13.11.15 n. 15 (p. 488)
  • 13.12 The scalar triple product
  • 13.13 Cramer’s rule for solving systems of three linear equations
  • 13.14 Exercises
  • 13.15 Normal vectors to planes
  • 13.16 Linear cartesian equations for planes
  • 13.17 Exercises
    • 13.17.1 n. 1 (p. 496)
    • 13.17.2 n. 2 (p. 496)
    • 13.17.3 n. 3 (p. 496)
    • 13.17.4 n. 4 (p. 496)
    • 13.17.5 n. 5 (p. 496)
  • CONTENTS - 13.17.6 n. 6 (p. 496) - 13.17.7 n. 8 (p. 496) - 13.17.8 n. 9 (p. 496) - 13.17.9 n. 10 (p. 496) - 13.17.10 n. 11 (p. 496) - 13.17.11 n. 13 (p. 496) - 13.17.12 n. 14 (p. 496) - 13.17.13 n. 15 (p. 496) - 13.17.14 n. 17 (p. 497) - 13.17.15 n. 20 (p. 497)
    • 13.18 The conic sections
    • 13.19 Eccentricity of conic sections
    • 13.20 Polar equations for conic sections
    • 13.21 Exercises
    • 13.22 Conic sections symmetric about the origin
    • 13.23 Cartesian equations for the conic sections
    • 13.24 Exercises
    • 13.25 Miscellaneous exercises on conic sections
  • 14 Calculus of vector-valued functions
  • 15 Linear spaces
    • 15.1 Introduction
    • 15.2 The definition of a linear space
    • 15.3 Examples of linear spaces
    • 15.4 Elementary consequences of the axioms
    • 15.5 Exercises
      • 15.5.1 n. 1 (p. 555)
      • 15.5.2 n. 2 (p. 555)
      • 15.5.3 n. 3 (p. 555)
      • 15.5.4 n. 4 (p. 555)
      • 15.5.5 n. 5 (p. 555)
      • 15.5.6 n. 6 (p. 555)
      • 15.5.7 n. 7 (p. 555)
      • 15.5.8 n. 11 (p. 555)
      • 15.5.9 n. 13 (p. 555)
      • 15.5.10 n. 14 (p. 555)
      • 15.5.11 n. 16 (p. 555)
      • 15.5.12 n. 17 (p. 555)
      • 15.5.13 n. 18 (p. 555)
      • 15.5.14 n. 19 (p. 555)
      • 15.5.15 n. 22 (p. 555)
    • 15.5.16 n. 23 (p. 555) 8 CONTENTS
    • 15.5.17 n. 24 (p. 555)
    • 15.5.18 n. 25 (p. 555)
    • 15.5.19 n. 26 (p. 555)
    • 15.5.20 n. 27 (p. 555)
    • 15.5.21 n. 28 (p. 555)
  • 15.6 Subspaces of a linear space
  • 15.7 Dependent and independent sets in a linear space
  • 15.8 Bases and dimension
  • 15.9 Exercises
    • 15.9.1 n. 1 (p. 560)
    • 15.9.2 n. 2 (p. 560)
    • 15.9.3 n. 3 (p. 560)
    • 15.9.4 n. 4 (p. 560)
    • 15.9.5 n. 5 (p. 560)
    • 15.9.6 n. 6 (p. 560)
    • 15.9.7 n. 7 (p. 560)
    • 15.9.8 n. 8 (p. 560)
    • 15.9.9 n. 9 (p. 560)
    • 15.9.10 n. 10 (p. 560)
    • 15.9.11 n. 11 (p. 560)
    • 15.9.12 n. 12 (p. 560)
    • 15.9.13 n. 13 (p. 560)
    • 15.9.14 n. 14 (p. 560)
    • 15.9.15 n. 15 (p. 560)
    • 15.9.16 n. 16 (p. 560)
    • 15.9.17 n. 22 (p. 560)
    • 15.9.18 n. 23 (p. 560)
  • 15.10 Inner products. Euclidean spaces. Norms
  • 15.11 Orthogonality in a euclidean space
  • 15.12 Exercises
    • 15.12.1 n. 9 (p. 567)
    • 15.12.2 n. 11 (p. 567)
  • 15.13 Construction of orthogonal sets. The Gram-Schmidt process
  • 15.14 Orthogonal complements. projections
    • finite-dimensional subspace 15.15 Best approximation of elements in a euclidean space by elements in a
  • 15.16 Exercises
    • 15.16.1 n. 1 (p. 576)
    • 15.16.2 n. 2 (p. 576)
    • 15.16.3 n. 3 (p. 576)
    • 15.16.4 n. 4 (p. 576)
  • CONTENTS
  • 16 Linear transformations and matrices
    • 16.1 Linear transformations
    • 16.2 Null space and range
    • 16.3 Nullity and rank
    • 16.4 Exercises
      • 16.4.1 n. 1 (p. 582)
      • 16.4.2 n. 2 (p. 582)
      • 16.4.3 n. 3 (p. 582)
      • 16.4.4 n. 4 (p. 582)
      • 16.4.5 n. 5 (p. 582)
      • 16.4.6 n. 6 (p. 582)
      • 16.4.7 n. 7 (p. 582)
      • 16.4.8 n. 8 (p. 582)
      • 16.4.9 n. 9 (p. 582)
      • 16.4.10 n. 10 (p. 582)
      • 16.4.11 n. 16 (p. 582)
      • 16.4.12 n. 17 (p. 582)
      • 16.4.13 n. 23 (p. 582)
      • 16.4.14 n. 25 (p. 582)
      • 16.4.15 n. 27 (p. 582)
    • 16.5 Algebraic operations on linear transformations
    • 16.6 Inverses
    • 16.7 One-to-one linear transformations
    • 16.8 Exercises
      • 16.8.1 n. 15 (p. 589)
      • 16.8.2 n. 16 (p. 589)
      • 16.8.3 n. 17 (p. 589)
      • 16.8.4 n. 27 (p. 590)
    • 16.9 Linear transformations with prescribed values
    • 16.10 Matrix representations of linear transformations
    • 16.11 Construction of a matrix representation in diagonal form
    • 16.12 Exercises
      • 16.12.1 n. 3 (p. 596)
      • 16.12.2 n. 4 (p. 596)
      • 16.12.3 n. 5 (p. 596)
      • 16.12.4 n. 7 (p. 597)
      • 16.12.5 n. 8 (p. 597)
      • 16.12.6 n. 16 (p. 597)
    • Chapter
  • CHAPTER
  • 4 Chapter
    • Chapter
  • CHAPTER
  • 6 Chapter
    • Chapter
  • CHAPTER
  • 8 Chapter
    • Chapter
  • CHAPTER
  • 10 Chapter