


Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Euler’s Totient Function
Tipologia: Notas de estudo
1 / 4
Esta página não é visível na pré-visualização
Não perca as partes importantes!
For every positive integer n, Euler’s totient function, or φ-function, gives the number φ(n) of integers less than n that are relatively prime to n, with the convention that φ(1) = 1. Students of abstract algebra also know φ(n) as the number of generators of the cyclic group Z/nZ. It therefore seems worthwhile to consider generalizations of Euler’s totient function from a group theoretic perspective. One such generalization is Jordan’s totient function [2, pp. 147-155]. For pos- itive integers n and k, Jk(n) is defined to be the number of k-tuples (a 1 ,... , ak) from { 1 ,... , n} such that the greatest common divisor of {a 1 ,... , ak} is rela- tively prime to n. Note that Jk is a generalization Euler’s totient function since J 1 (n) = φ(n). To view Jordan’s totient function from a group theoretic perspective, note that Jk(n) also counts the number of sequences (g 1 ,... , gk) of elements in Z/nZ such that, if Gi is the subgroup generated by {g 1 ,... , gi}, then
{ 0 } ≤ G 1 ≤ · · · ≤ Gk− 1 ≤ Gk = Z/nZ.
Moreover, by using simple properties of subgroups and quotient groups of Z/nZ, identities concerning Jk(n) may be obtained. For example, Gegenbauer (see [2, p. 151]) showed that
Jk+l(n) =
1 ≤d≤n d|n
dlJk(d)Jl(n/d).
To see why Gegenbauer’s result is true, recall that for each divisor d of n, there is a unique subgroup of order d in Z/nZ. Furthermore, the corresponding quotient group (Z/nZ)/(Z/dZ) is isomorphic to Z/(n/d)Z. There are Jk(d) sequences of length k for Z/dZ. Every extension of such a sequence to a sequence of length k + l for Z/nZ corresponds to a sequence of length l for the quotient group. Since every element of the quotient group has d representatives in Z/nZ, the number of sequences of length k+l that pass through Z/dZ is dlJk(d)Jl(n/d). Summing over all divisors gives Gegenbauer’s result. (See [2] or [4] for other identities involving Jk(n).) In this note, we consider a variation of Jordan’s totient function defined as follows. For positive integers n and k, let Mk(n) be the number of sequences
(g 1 ,... , gk) of elements in Z/nZ such that, if Gi is the subgroup generated by {g 1 ,... , gi}, then
{ 0 } < G 1 < · · · < Gk− 1 < Gk = Z/nZ.
In other words, Mk(n) counts only those sequences (g 1 ,... , gk) with the property that Gi is strictly contained in Gi+1 for i = 1,... , k − 1. Together with the convention that M 1 (1) = 1, we have that M 1 (n) = φ(n). The function Mk(n) is therefore another generalization of Euler’s totient function. One noteworthy feature of Mk(n) is that, for a fixed n, Mk(n) will eventually become 0. In fact, if n = pe 11 · · · pe rr where the pi are prime, then Mk(n) = 0 for all k > e 1 + · · · + er. This of course follows from the fact that there are no appropriate sequences of subgroups of length more than e 1 + · · · + er. Unlike Jk, however, Mk is not multiplicative, i.e., Jk(m)Jk(n) need not equal Jk(mn) when m and n are relatively prime. For example, M 2 (6) = 10 while M 2 (2) = M 2 (3) = 0. We conclude this note with some additional properties of Mk.
Theorem 1. If n, k and l are positive integers, then
Mk+l(n) =
1 <d<n d|n
dlMk(d)Ml(n/d).
Proof. The argument is similar to that for Gegenbauer’s result, the only change being that the sum is now over the nontrivial divisors of n due to the strict containment of the corresponding subgroups.
Corollary 2. If n and k are positve integers, and p is prime, then
Mk+1(pn) = (p − 1)pn−^1
n∑− 1
j=k
Mk(pj^ ).
Proof. By Theorem 1,
Mk+1(pn) =
1 <d<pn d|pn
dMk(d)M 1 (n/d)
n∑− 1
j=k
pj^ Mk(pj^ )φ(pn−j^ )
n∑− 1
j=k
(p − 1)pn−^1 Mk(pj^ )
= (p − 1)pn−^1
n∑− 1
j=k
Mk(pj^ ).
than n. Define L(pn) =
∑n k=1 Mk(p
n). By Corollary 2 we have
∑^ n
k=
Mk(pn) = M 1 (pn) +
∑^ n
k=
Mk(pn)
= pn−^1 (p − 1) +
∑^ n
k=
pn−^1 (p − 1)
n∑− 1
j=k− 1
Mk− 1 (pj^ )
= pn−^1 (p − 1) + pn−^1 (p − 1)
n∑− 1
i=
L(pi)
= pn−^1 (p − 1)
n∑− 1
i=
L(pi)
By induction we have
n∑− 1
i=
L(pi) =
n∑− 2
i=
L(pi)
n∏− 1
k=
pk−^2 (p − 1) + 1
n∏− 1
k=
pk−^2 (p − 1) + 1
1 + pn−^2 (p − 1)
) n∏−^1
k=
pk−^2 (p − 1) + 1
∏^ n
k=
pk−^2 (p − 1) + 1
The theorem follows immediately.
[1] L. Comtet, Advanced combinatorics, D. Reidel Publishing Co., Dordrecht,
[2] L. Dickson, History of the theory of numbers. Vol. I: Divisibility and pri- mality, Chelsea Publishing Co., New York, 1966.
[3] P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford Ser. 7 (1936), 134–151.
[4] R. Sivaramakrishnan, The many facets of Euler’s totient. II. Generaliza- tions and analogues, Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169–187.