




Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Lista de exercícios
Tipologia: Exercícios
1 / 8
Esta página não é visível na pré-visualização
Não perca as partes importantes!
1. The necessary and sufficient condition for three points with position vectorsa, b,c
to be collinear is that
there exist scalars x, y, z not all zero such thatxa yb zc 0
where x + y + z = 0.
2. If A and B are two points with position vectorsa
andb
respectively, then the position vector of a point
C dividing AB in the ratio m : n
(i) Internally is,
m n
mb na
(ii) Externally is,
m n
mb na
3. If S is any point in plane of (^) ABC, then SA SBSC 3 SG, where G is the centroid of ΔABC. 4. Ifa
andb
are two non zero vectors inclined at an angle θ, then
(i)a b |a||b|
(^) cos θ (ii) Projection ofa
onb
= b
a
|b|
a b
(iii) Projection vector ofa
onb
= b
|b|
a b
b
|b |
a b
(iv) 2 (a b)
|b|
|a|
| a b|
(v)
|b|
(a b) (a b) |a|
(vi) cos θ =
|a||b |
a b
(vii)a b|a||b|sin nˆ
, where n is a unit vector perpendicular to the plane ofa
andb
(ix) Unit vectors perpendicular to the plane ofa
andb
is ±
|a b|
a b
(x) Ifa
,b
are unit vectors at an angle θ, then sin |a b|
, cos |a b|
, tan
|a b|
|a b|
5. Area of ΔABC = |BC CA|
6. Ifa, b,c
are the PV the vertices A, B, C of ΔABC, then Area of ΔABC = |a b b c c a|
Length of the perpendicular from C on AB =
|a b|
| a b b c c a|
2 2
2 2
2 a b
(a xb) a.b
is
(a) 1/2 (b) 3/
(c) 5/2 (d) 4/
vectors 3i + 4j and - 5i + 7j is
(a) 141 (b) 132
(c) 41 /2 (d) N/T
j
i 52
j,a
i 8
j, 40
i 3
60 are collinear if
(a) a = 40 (b) a = -
(c) a = 20 (d) N/T
j. s
i
j&b 2
i 2
a
between diagonals
(a) 30
o & 150
o (b) 45
o & 135
o
(c) 90
o & 90
o (d) N/T
are unit vectors such that a b
3 is ┴
to 7 a b
5 , then angle between a b
& is
(a) π/2 (b) π / 3
(c) π /4 (d) N/T
andB
are inclined at π
and |A
|/2 is
(a) 0 (b) π/
(c) 1 (d) π/ 4
3 i 2 j 5 k
and
2 i j 3 kis displaced form a point P to
a point Q whose respective position vectors
are
2 i j 3 k and
4 i 3 j 7 k. The work
done by the force is
(a) 77 units (b) 24 units
(c) 63 units (d) 48 units
displaces it from A (3,4,5)to B (1,1,1). If the
work done is 2 units, then λ is
(a) -10 (b) – 2
(c) 5 (d) 2.
on 5 a 2 b
&a 3 b
. Given| b| 3 &|a| 2 2
angle betweena &b
is π/
(a) 15 (b) √
(c) √593 (d) √
j 3
i x
is rotated through an
angle θ and doubled in magnitude, then it
becomes k
j 2
i ( 4 x 2 )
4 . The value of x is:
= x + 1/x such that OP.I = 1 and OQ.I = -
where I is a unit vector along the x-axis, then
the length of vector 2OP + 3OQ is
(a) 5 5 (b) 3 5
(c) 2 5 (d) 5
|B| = 4 , |C| = 8 ,then |A + B + C| equals
(a) 13 (b) 81
(c) 9 (d) 5
andB
are inclined at an
angle 2θ and |A
|<l then for θ [0,], θ
may lie in the interval
(a) ( /6 , /3) (b) ( /6 , /2 ]
(c) ( 5/6 , ] (d) [/2 ,5/6 ]
andB
such that STP [ A
xB
] = 1/4 then A
andB
are inclined
(a) π/6 (b) π/
(c) π/3 (d) π/ 4
andB
unit vectors then greatest value
of |A
| is
(a) 2 (b) 4
(c) 2√2 (d) √
|= l; |b |=4 and | b x c | = 15. If b-2c = λa
Then a value of λ is
(a) 1 (b) - l
(c) 2 (d) - 4
i
-5 k
ˆ i
ˆ (^) acting at ( 9 ,-1 , 2 ) & ( 3 , -2 , 1 )
(a) k
j 5
i
(b) k
j 5
i
(c) k
j 10
i 2
2 (d) k
j 10
i 2
which is equally inclined to co-
ordinate axes such that | r | = 15 3 is
(a) k
j
i
(b) 15 k
j
i
(c) 7^ k
j
i
(d) None
which of the following
expressions is to any of remaining three?
(a)u.( v w)
(b)(v w).u
(c)v.( u w)
(d) w u v
( x ).
, | b| 5 &|c| 7
, then
θ betweena &b
is
(a) a = 40 (b) a = -
(c) a = 20 (d) N/T
are unit vectors,
a bc 0
& 2(a. b b.c c.a
) + 3 = 0, then
third vector is of length-
(a) 3 (b) 2
(c) 1 (d) N/T
be 3 vectors such that
a.( b c)b.(ca)c.(ab) 0
and
| a| 1 ,|b| 4 ,|c| 8
then| a b c|
equals
(a) 13 (b) 81
(c) 9 (d) N/T
(^) is orthogonal tob
& a 2 b
(^) is
orthogonal to a
, then
(a) |a
| = √2 |b
| (b) |a
| = 2 |b
(c) |a
| = |b
| (d) 2 |a
| = |b
on vector k
j 7
i 4
4 is
(a) 3 (b) 3 6
(c) 6 /3 (d) N/T
k&
j
i 2
2 k
j 4
i 4
2 . Length of internal
bisector of BOA of AOB is
(a)
(b)
(c)
(d) N/T
j 8
i 6
acting at point k
j 3
i
2 about point
k
j
i 2
(a) 211 (b) 0
(c) 54 (d) N/T
(c) 8 (d) 6
with y- axis, equal angles with with b = ( β ,
perpendicular to d = (1, -1, 2). If |a | = 2√3 ,
then the vector a is
(a) (2, 2,-2) (b) (-2. -2, -2)
(c) (-2,-2, 2) (d) (2,-2,-2).
are non coplanar vectors such that
[k( a b),k b,kc]
2
=[a ,b c,c]
, k has
(a) no value (b) exactly one value
(c) exactly two values
(d) exactly three values
Then OM, the positive vector of bisector of
angle POQ, is
(a) i - j - k (b) 2 ( i + j – k )
(c) i + j + k (d) – i + j + k
be P.V. of vertices of a ∆ ABC
whose circumcenter is origin then
orthocenter is equals
(a)a b c
(b) (a b c
(c) (a b c
(^) ) /2 (d) N/T
c = - 7c then angle between a & c is
(a) 0 (b) π /
(c) π/2 (d) π
a c b c b c d a b b
d c c a c d b b c b
c c a d a b a a c a
c c a b d a d a b d
b d a b a d